Chinese-Mistral

## 🎉 新闻 - [2024-08-31] 发布[Chinese-Mistral-7B-Instruct-v0.2](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)。 - [2024-04-04] 发布[Chinese-Mistral-7B-Instruct-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)。 - [2024-03-31] 发布[Chinese-Mistral-7B-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B)基座模型。 ## 🚀 介绍 随着Mistral AI公司开源其七十亿参数模型[Mistral-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf),该模型超越[Llama](https://huggingface.co/meta-llama),成为当前最强大的开源模型之一。Mistral-7B在各类基准测试中,不仅超过了Llama2-13B,而且在推理、数学、代码生成任务中超过Llama2-34B。 然而,Mistral-7B的训练语料主要为英文文本,其中文能力较为欠缺。其次,Mistral-7B的词表不支持中文,导致其对中文的编码和解码效率较低,限制了在中文场景的应用。
为了克服这一局限,清华大学地球系统科学系地球和空间信息科学实验室基于Mistral-7B进行了中文词表扩充和增量预训练,增强了Mistral-7B在中文任务上的表现,并提高了其对中文文本的编解码效率。
项目地址:https://github.com/THU-ESIS/Chinese-Mistral ## 📥 模型下载 本项目开源了Chinese-Mistral-7B与Chinese-Mistral-7B-instruct: | 模型 | 下载地址 | 说明 | |:-----------------------------:|:------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | Chinese-Mistral-7B | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)
[wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-v0.1)
[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-v0.1) | 完整基座模型 | | Chinese-Mistral-7B-Instruct-v0.1 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)
[wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1)
[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | 完整指令精调模型
中英文alpaca_gpt4进行lora微调| | Chinese-Mistral-7B-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)
[wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2)
| 完整指令精调模型
百万条高质量数据进行lora微调| ## 📈 模型性能 ### 模型综合能力 我们采用C-Eval、CMMLU和MMLU三个评测数据集全面评估Chinese-Mistral-7B: - C-Eval:它是一个全面的中文基础模型评估套件。包含13948个多项选择题,涵盖52个学科和四个难度级别。它旨在评估模型在人文、社科、理工等多个学科大类上的知识和推理能力。 - CMMLU:它是一个综合性的中文评估基准。涵盖了从基础学科到高级专业水平的67个主题。它专门用于评估语言模型在中文语境下的知识和推理能力。 - MMLU:它是一个包含了57个子任务的英文评测数据集。涵盖了从初等数学、美国历史、计算机科学到法律等多个领域,难度覆盖高中水平到专家水平,有效地衡量了模型在人文、社科和理工等多个学科大类中的综合知识能力。 下表展示了开源社区较流行的中文Llama2、中文Mistral与我们发布的Chinese-Mistral-7B的评测结果。评测方式采用5-shot,采用opencompass在相同的实验条件下进行评测。 | 模型名称 | C-Eval | CMMLU | MMLU | 平均得分 | |:-----------------------------------------------------------------------------------------------:|:-------------:|:-------------:|:------------:|:-----------------:| | [Linly-Al/Chinese-LLaMA-2-7B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-7B-hf) | 31.2 | 30.14 | 35.09 | 32.14 | | [hfl/chinese-llama-2-7b](https://huggingface.co/hfl/chinese-llama-2-7b) | 27.4 | 33.38 | 37.25 | 32.68 | | [Linly-Al/Chinese-LLaMA-2-13B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-13B-hf) | 39.9 | 42.48 | 52.54 | 44.97 | | [hfl/chinese-llama-2-13b](https://huggingface.co/hfl/chinese-llama-2-13b) | 41.0 | 43.25 | 52.94 | 45.73 | | [gywy/Mistral-7B-v0.1-chinese](https://huggingface.co/gywy/Mistral-7B-v0.1-chinese) | 37.4 | 36.45 | 37.38 | 37.08 | |[OpenBuddy/openbuddy-mistral-7b-v13-base](https://huggingface.co/OpenBuddy/openbuddy-mistral-7b-v13-base)| 44.4 | 46.32 | 57.79 | 49.50 | | **[Chinese-Mistral-7B (本模型)](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)** | **47.5** | **47.52** | **58.29** | **51.10** | 由上表可知,Chinese-Mistral-7B的中文和英文通识能力不仅超过同等参数量的中文Llama2模型,而且在多项评测中优于130亿参数量的中文Llama2。同时,Chinese-Mistral-7B的评测表现高于开源社区其他同等参数量的中文Mistral。 ### 中文编解码效率 我们从WuDaoCorpus2中采样训练数据,使用sentencepiece训练中文BPE词表,并人工选取部分其他优秀中文词表进行词表融合。经过严格的人工审核,最终形成的词表大小为63776。为了提高模型计算效率,我们在词表末尾添加<|sym1|>、……、<|sym96|>,使得词表大小为128的倍数,最终得到的词表大小为63872。 我们随机选取了WuDaoCorpus2_part-2021278643作为测试数据以评测分词效果。经统计,测试数据包括67013857个单词,我们用单词数量除以分词后的Token数量,计算压缩率。压缩率越大,表明分词效果越好,在中文场景的编解码效率越高。 | 模型名称 | 模型类型 | 词表大小 | Token数量 | 压缩率 | |:-----------------------------------------------------------------------------------------------:|:-------------:|:-------------:|:------------:|:-----------------:| | [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) | Llama | 32000 | 97406876 | 0.6880 | | [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | Mistral | 32000 | 76269008 | 0.8787 | | [THUDM/chatglm2-6b](https://huggingface.co/THUDM/chatglm2-6b) | GLM | 64789 | 43487673 | 1.5410 | | [Linly-Al/Chinese-LLaMA-2-13B-hf](https://huggingface.co/Linly-Al/Chinese-LLaMA-2-13B-hf) | Llama | 40076 | 65402900 | 1.0246 | | [hfl/chinese-llama-2-13b](https://huggingface.co/hfl/chinese-llama-2-13b) | Llama | 55296 | 45763513 | 1.4644 | | [OpenBuddy/openbuddy-mistral-7b-v13-base](https://huggingface.co/OpenBuddy/openbuddy-mistral-7b-v13-base) | Mistral | 36608 | 65329642 | 1.0256 | |[gywy/Mistral-7B-v0.1-chinese](https://huggingface.co/gywy/Mistral-7B-v0.1-chinese)| Mistral | 48593 | 46670146 | 1.4359 | | **[Chinese-Mistral-7B (本模型)](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)** | Mistral | 63872 | **43044156** | **1.5569** | 由上表可知,Chinese-Mistral-7B在可观的词表大小条件下,取得了最高的压缩率,表明其能够高效处理中文文本。 ## 💻 模型推理 如下是使用Chinese-Mistral-7B进行推理的代码示例。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/Chinese-Mistral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "我是一个人工智能助手,我能够帮助你做如下这些事情:" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=120, do_sample=True) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 如下是使用Chinese-Mistral-7B-Instruct进行推理的代码示例。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/Chinese-Mistral-7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "请为我推荐中国三座比较著名的山" messages = [{"role": "user", "content": text}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=300, do_sample=True) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] print(outputs) ``` ## 📝 训练数据 训练数据采样于WanJuan、baike2018qa、Dolma、gutenberg-books等高质量开源数据集。我们对这些数据集进行细粒度清洗,并充分考虑训练数据集中不同类别数据的占比。 ## ⚠️ 局限性 Chinese-Mistral-7B的开发旨在为开源社区提供一个性能优越的中文大语言模型。请注意,由于模型大小及训练数据规模限制,本模型仍可能生成误导性内容或者有害内容。因此,在部署任何由Chinese-Mistral系列模型驱动的应用程序之前,开发人员必须进行安全测试,对模型进行相应调整,以满足安全性需求。 ## ✒️ 引用 如果您觉得本项目对您的研究有所帮助或使用了本项目的模型,请引用本项目: ```bibtex @misc{Chinese-Mistral, author = {Zhou, Chen and Yuqi, Bai}, title = {Chinese-Mistral: An Efficient and Effective Chinese Large Language Model}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/THU-ESIS/Chinese-Mistral}} } ``` ## 结语 我们欢迎社区的支持和合作,共同推动通用大语言模型和领域大语言模型的发展。联系方式:
白玉琪,清华大学地球系统科学系长聘教授,实验室负责人,yuqibai@tsinghua.edu.cn
陈舟,清华大学地球系统科学系博士生,大语言模型组组长,chenz22@mails.tsinghua.edu.cn