iqrakiran commited on
Commit
9c66d40
1 Parent(s): 42c52f4

Upload FalconForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - trl
5
+ - sft
6
+ ---
7
+
8
+ # Model Card for Model ID
9
+
10
+ <!-- Provide a quick summary of what the model is/does. -->
11
+
12
+
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+
18
+ <!-- Provide a longer summary of what this model is. -->
19
+
20
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
+
22
+ - **Developed by:** [More Information Needed]
23
+ - **Funded by [optional]:** [More Information Needed]
24
+ - **Shared by [optional]:** [More Information Needed]
25
+ - **Model type:** [More Information Needed]
26
+ - **Language(s) (NLP):** [More Information Needed]
27
+ - **License:** [More Information Needed]
28
+ - **Finetuned from model [optional]:** [More Information Needed]
29
+
30
+ ### Model Sources [optional]
31
+
32
+ <!-- Provide the basic links for the model. -->
33
+
34
+ - **Repository:** [More Information Needed]
35
+ - **Paper [optional]:** [More Information Needed]
36
+ - **Demo [optional]:** [More Information Needed]
37
+
38
+ ## Uses
39
+
40
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
+
42
+ ### Direct Use
43
+
44
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
+
46
+ [More Information Needed]
47
+
48
+ ### Downstream Use [optional]
49
+
50
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
+
52
+ [More Information Needed]
53
+
54
+ ### Out-of-Scope Use
55
+
56
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
+
58
+ [More Information Needed]
59
+
60
+ ## Bias, Risks, and Limitations
61
+
62
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
+
64
+ [More Information Needed]
65
+
66
+ ### Recommendations
67
+
68
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
+
70
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
+
72
+ ## How to Get Started with the Model
73
+
74
+ Use the code below to get started with the model.
75
+
76
+ [More Information Needed]
77
+
78
+ ## Training Details
79
+
80
+ ### Training Data
81
+
82
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
+
84
+ [More Information Needed]
85
+
86
+ ### Training Procedure
87
+
88
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
+
90
+ #### Preprocessing [optional]
91
+
92
+ [More Information Needed]
93
+
94
+
95
+ #### Training Hyperparameters
96
+
97
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
+
99
+ #### Speeds, Sizes, Times [optional]
100
+
101
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
+
103
+ [More Information Needed]
104
+
105
+ ## Evaluation
106
+
107
+ <!-- This section describes the evaluation protocols and provides the results. -->
108
+
109
+ ### Testing Data, Factors & Metrics
110
+
111
+ #### Testing Data
112
+
113
+ <!-- This should link to a Dataset Card if possible. -->
114
+
115
+ [More Information Needed]
116
+
117
+ #### Factors
118
+
119
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
+
121
+ [More Information Needed]
122
+
123
+ #### Metrics
124
+
125
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
+
127
+ [More Information Needed]
128
+
129
+ ### Results
130
+
131
+ [More Information Needed]
132
+
133
+ #### Summary
134
+
135
+
136
+
137
+ ## Model Examination [optional]
138
+
139
+ <!-- Relevant interpretability work for the model goes here -->
140
+
141
+ [More Information Needed]
142
+
143
+ ## Environmental Impact
144
+
145
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
+
147
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
+
149
+ - **Hardware Type:** [More Information Needed]
150
+ - **Hours used:** [More Information Needed]
151
+ - **Cloud Provider:** [More Information Needed]
152
+ - **Compute Region:** [More Information Needed]
153
+ - **Carbon Emitted:** [More Information Needed]
154
+
155
+ ## Technical Specifications [optional]
156
+
157
+ ### Model Architecture and Objective
158
+
159
+ [More Information Needed]
160
+
161
+ ### Compute Infrastructure
162
+
163
+ [More Information Needed]
164
+
165
+ #### Hardware
166
+
167
+ [More Information Needed]
168
+
169
+ #### Software
170
+
171
+ [More Information Needed]
172
+
173
+ ## Citation [optional]
174
+
175
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
+
177
+ **BibTeX:**
178
+
179
+ [More Information Needed]
180
+
181
+ **APA:**
182
+
183
+ [More Information Needed]
184
+
185
+ ## Glossary [optional]
186
+
187
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
+
189
+ [More Information Needed]
190
+
191
+ ## More Information [optional]
192
+
193
+ [More Information Needed]
194
+
195
+ ## Model Card Authors [optional]
196
+
197
+ [More Information Needed]
198
+
199
+ ## Model Card Contact
200
+
201
+ [More Information Needed]
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ybelkada/falcon-7b-sharded-bf16",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": false,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7868c868e59cff543aa66b86384270fa9352011a22c862b0e3444f477d11f544
3
+ size 199358176
adapter_model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94b51d6f68fe4298cb3805eb665155730974a4a2d32a1624d55e40cfd28048f8
3
+ size 198162064
adapter_model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b86531f02b3dae66264ceb6076a88940a649ef16cdb479365691bbd838abae
3
+ size 124707008
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.42.4"
6
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 522190848
4
+ },
5
+ "weight_map": {
6
+ "base_model.model.transformer.h.0.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
7
+ "base_model.model.transformer.h.0.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
8
+ "base_model.model.transformer.h.0.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
9
+ "base_model.model.transformer.h.0.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
10
+ "base_model.model.transformer.h.0.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
11
+ "base_model.model.transformer.h.0.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
12
+ "base_model.model.transformer.h.0.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
13
+ "base_model.model.transformer.h.0.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
14
+ "base_model.model.transformer.h.1.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
15
+ "base_model.model.transformer.h.1.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
16
+ "base_model.model.transformer.h.1.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
17
+ "base_model.model.transformer.h.1.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
18
+ "base_model.model.transformer.h.1.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
19
+ "base_model.model.transformer.h.1.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
20
+ "base_model.model.transformer.h.1.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
21
+ "base_model.model.transformer.h.1.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
22
+ "base_model.model.transformer.h.10.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
23
+ "base_model.model.transformer.h.10.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
24
+ "base_model.model.transformer.h.10.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
25
+ "base_model.model.transformer.h.10.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
26
+ "base_model.model.transformer.h.10.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
27
+ "base_model.model.transformer.h.10.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
28
+ "base_model.model.transformer.h.10.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
29
+ "base_model.model.transformer.h.10.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
30
+ "base_model.model.transformer.h.11.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
31
+ "base_model.model.transformer.h.11.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
32
+ "base_model.model.transformer.h.11.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
33
+ "base_model.model.transformer.h.11.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
34
+ "base_model.model.transformer.h.11.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
35
+ "base_model.model.transformer.h.11.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
36
+ "base_model.model.transformer.h.11.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
37
+ "base_model.model.transformer.h.11.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
38
+ "base_model.model.transformer.h.12.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
39
+ "base_model.model.transformer.h.12.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
40
+ "base_model.model.transformer.h.12.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
41
+ "base_model.model.transformer.h.12.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
42
+ "base_model.model.transformer.h.12.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
43
+ "base_model.model.transformer.h.12.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
44
+ "base_model.model.transformer.h.12.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
45
+ "base_model.model.transformer.h.12.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
46
+ "base_model.model.transformer.h.13.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
47
+ "base_model.model.transformer.h.13.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
48
+ "base_model.model.transformer.h.13.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
49
+ "base_model.model.transformer.h.13.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
50
+ "base_model.model.transformer.h.13.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
51
+ "base_model.model.transformer.h.13.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
52
+ "base_model.model.transformer.h.13.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
53
+ "base_model.model.transformer.h.13.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
54
+ "base_model.model.transformer.h.14.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
55
+ "base_model.model.transformer.h.14.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
56
+ "base_model.model.transformer.h.14.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
57
+ "base_model.model.transformer.h.14.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
58
+ "base_model.model.transformer.h.14.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
59
+ "base_model.model.transformer.h.14.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
60
+ "base_model.model.transformer.h.14.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
61
+ "base_model.model.transformer.h.14.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
62
+ "base_model.model.transformer.h.15.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
63
+ "base_model.model.transformer.h.15.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
64
+ "base_model.model.transformer.h.15.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
65
+ "base_model.model.transformer.h.15.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
66
+ "base_model.model.transformer.h.15.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
67
+ "base_model.model.transformer.h.15.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
68
+ "base_model.model.transformer.h.15.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
69
+ "base_model.model.transformer.h.15.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
70
+ "base_model.model.transformer.h.16.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
71
+ "base_model.model.transformer.h.16.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
72
+ "base_model.model.transformer.h.16.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
73
+ "base_model.model.transformer.h.16.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
74
+ "base_model.model.transformer.h.16.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
75
+ "base_model.model.transformer.h.16.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
76
+ "base_model.model.transformer.h.16.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
77
+ "base_model.model.transformer.h.16.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
78
+ "base_model.model.transformer.h.17.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
79
+ "base_model.model.transformer.h.17.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
80
+ "base_model.model.transformer.h.17.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
81
+ "base_model.model.transformer.h.17.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
82
+ "base_model.model.transformer.h.17.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
83
+ "base_model.model.transformer.h.17.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
84
+ "base_model.model.transformer.h.17.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
85
+ "base_model.model.transformer.h.17.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
86
+ "base_model.model.transformer.h.18.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
87
+ "base_model.model.transformer.h.18.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
88
+ "base_model.model.transformer.h.18.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
89
+ "base_model.model.transformer.h.18.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
90
+ "base_model.model.transformer.h.18.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
91
+ "base_model.model.transformer.h.18.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
92
+ "base_model.model.transformer.h.18.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
93
+ "base_model.model.transformer.h.18.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
94
+ "base_model.model.transformer.h.19.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
95
+ "base_model.model.transformer.h.19.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
96
+ "base_model.model.transformer.h.19.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
97
+ "base_model.model.transformer.h.19.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
98
+ "base_model.model.transformer.h.19.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
99
+ "base_model.model.transformer.h.19.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
100
+ "base_model.model.transformer.h.19.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
101
+ "base_model.model.transformer.h.19.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
102
+ "base_model.model.transformer.h.2.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
103
+ "base_model.model.transformer.h.2.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
104
+ "base_model.model.transformer.h.2.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
105
+ "base_model.model.transformer.h.2.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
106
+ "base_model.model.transformer.h.2.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
107
+ "base_model.model.transformer.h.2.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
108
+ "base_model.model.transformer.h.2.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
109
+ "base_model.model.transformer.h.2.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
110
+ "base_model.model.transformer.h.20.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
111
+ "base_model.model.transformer.h.20.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
112
+ "base_model.model.transformer.h.20.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
113
+ "base_model.model.transformer.h.20.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
114
+ "base_model.model.transformer.h.20.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
115
+ "base_model.model.transformer.h.20.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
116
+ "base_model.model.transformer.h.20.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
117
+ "base_model.model.transformer.h.20.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
118
+ "base_model.model.transformer.h.21.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
119
+ "base_model.model.transformer.h.21.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
120
+ "base_model.model.transformer.h.21.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
121
+ "base_model.model.transformer.h.21.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
122
+ "base_model.model.transformer.h.21.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
123
+ "base_model.model.transformer.h.21.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
124
+ "base_model.model.transformer.h.21.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
125
+ "base_model.model.transformer.h.21.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
126
+ "base_model.model.transformer.h.22.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
127
+ "base_model.model.transformer.h.22.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
128
+ "base_model.model.transformer.h.22.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
129
+ "base_model.model.transformer.h.22.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
130
+ "base_model.model.transformer.h.22.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
131
+ "base_model.model.transformer.h.22.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
132
+ "base_model.model.transformer.h.22.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
133
+ "base_model.model.transformer.h.22.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
134
+ "base_model.model.transformer.h.23.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
135
+ "base_model.model.transformer.h.23.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
136
+ "base_model.model.transformer.h.23.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
137
+ "base_model.model.transformer.h.23.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
138
+ "base_model.model.transformer.h.23.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
139
+ "base_model.model.transformer.h.23.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
140
+ "base_model.model.transformer.h.23.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
141
+ "base_model.model.transformer.h.23.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
142
+ "base_model.model.transformer.h.24.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
143
+ "base_model.model.transformer.h.24.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
144
+ "base_model.model.transformer.h.24.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
145
+ "base_model.model.transformer.h.24.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
146
+ "base_model.model.transformer.h.24.self_attention.dense.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
147
+ "base_model.model.transformer.h.24.self_attention.dense.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
148
+ "base_model.model.transformer.h.24.self_attention.query_key_value.lora_A.weight": "adapter_model-00002-of-00003.safetensors",
149
+ "base_model.model.transformer.h.24.self_attention.query_key_value.lora_B.weight": "adapter_model-00002-of-00003.safetensors",
150
+ "base_model.model.transformer.h.25.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
151
+ "base_model.model.transformer.h.25.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
152
+ "base_model.model.transformer.h.25.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
153
+ "base_model.model.transformer.h.25.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
154
+ "base_model.model.transformer.h.25.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
155
+ "base_model.model.transformer.h.25.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
156
+ "base_model.model.transformer.h.25.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
157
+ "base_model.model.transformer.h.25.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
158
+ "base_model.model.transformer.h.26.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
159
+ "base_model.model.transformer.h.26.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
160
+ "base_model.model.transformer.h.26.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
161
+ "base_model.model.transformer.h.26.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
162
+ "base_model.model.transformer.h.26.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
163
+ "base_model.model.transformer.h.26.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
164
+ "base_model.model.transformer.h.26.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
165
+ "base_model.model.transformer.h.26.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
166
+ "base_model.model.transformer.h.27.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
167
+ "base_model.model.transformer.h.27.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
168
+ "base_model.model.transformer.h.27.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
169
+ "base_model.model.transformer.h.27.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
170
+ "base_model.model.transformer.h.27.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
171
+ "base_model.model.transformer.h.27.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
172
+ "base_model.model.transformer.h.27.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
173
+ "base_model.model.transformer.h.27.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
174
+ "base_model.model.transformer.h.28.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
175
+ "base_model.model.transformer.h.28.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
176
+ "base_model.model.transformer.h.28.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
177
+ "base_model.model.transformer.h.28.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
178
+ "base_model.model.transformer.h.28.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
179
+ "base_model.model.transformer.h.28.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
180
+ "base_model.model.transformer.h.28.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
181
+ "base_model.model.transformer.h.28.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
182
+ "base_model.model.transformer.h.29.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
183
+ "base_model.model.transformer.h.29.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
184
+ "base_model.model.transformer.h.29.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
185
+ "base_model.model.transformer.h.29.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
186
+ "base_model.model.transformer.h.29.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
187
+ "base_model.model.transformer.h.29.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
188
+ "base_model.model.transformer.h.29.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
189
+ "base_model.model.transformer.h.29.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
190
+ "base_model.model.transformer.h.3.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
191
+ "base_model.model.transformer.h.3.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
192
+ "base_model.model.transformer.h.3.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
193
+ "base_model.model.transformer.h.3.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
194
+ "base_model.model.transformer.h.3.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
195
+ "base_model.model.transformer.h.3.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
196
+ "base_model.model.transformer.h.3.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
197
+ "base_model.model.transformer.h.3.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
198
+ "base_model.model.transformer.h.30.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
199
+ "base_model.model.transformer.h.30.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
200
+ "base_model.model.transformer.h.30.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
201
+ "base_model.model.transformer.h.30.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
202
+ "base_model.model.transformer.h.30.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
203
+ "base_model.model.transformer.h.30.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
204
+ "base_model.model.transformer.h.30.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
205
+ "base_model.model.transformer.h.30.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
206
+ "base_model.model.transformer.h.31.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
207
+ "base_model.model.transformer.h.31.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
208
+ "base_model.model.transformer.h.31.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
209
+ "base_model.model.transformer.h.31.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
210
+ "base_model.model.transformer.h.31.self_attention.dense.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
211
+ "base_model.model.transformer.h.31.self_attention.dense.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
212
+ "base_model.model.transformer.h.31.self_attention.query_key_value.lora_A.weight": "adapter_model-00003-of-00003.safetensors",
213
+ "base_model.model.transformer.h.31.self_attention.query_key_value.lora_B.weight": "adapter_model-00003-of-00003.safetensors",
214
+ "base_model.model.transformer.h.4.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
215
+ "base_model.model.transformer.h.4.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
216
+ "base_model.model.transformer.h.4.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
217
+ "base_model.model.transformer.h.4.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
218
+ "base_model.model.transformer.h.4.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
219
+ "base_model.model.transformer.h.4.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
220
+ "base_model.model.transformer.h.4.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
221
+ "base_model.model.transformer.h.4.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
222
+ "base_model.model.transformer.h.5.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
223
+ "base_model.model.transformer.h.5.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
224
+ "base_model.model.transformer.h.5.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
225
+ "base_model.model.transformer.h.5.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
226
+ "base_model.model.transformer.h.5.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
227
+ "base_model.model.transformer.h.5.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
228
+ "base_model.model.transformer.h.5.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
229
+ "base_model.model.transformer.h.5.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
230
+ "base_model.model.transformer.h.6.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
231
+ "base_model.model.transformer.h.6.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
232
+ "base_model.model.transformer.h.6.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
233
+ "base_model.model.transformer.h.6.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
234
+ "base_model.model.transformer.h.6.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
235
+ "base_model.model.transformer.h.6.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
236
+ "base_model.model.transformer.h.6.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
237
+ "base_model.model.transformer.h.6.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
238
+ "base_model.model.transformer.h.7.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
239
+ "base_model.model.transformer.h.7.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
240
+ "base_model.model.transformer.h.7.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
241
+ "base_model.model.transformer.h.7.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
242
+ "base_model.model.transformer.h.7.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
243
+ "base_model.model.transformer.h.7.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
244
+ "base_model.model.transformer.h.7.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
245
+ "base_model.model.transformer.h.7.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
246
+ "base_model.model.transformer.h.8.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
247
+ "base_model.model.transformer.h.8.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
248
+ "base_model.model.transformer.h.8.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
249
+ "base_model.model.transformer.h.8.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
250
+ "base_model.model.transformer.h.8.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
251
+ "base_model.model.transformer.h.8.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
252
+ "base_model.model.transformer.h.8.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
253
+ "base_model.model.transformer.h.8.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
254
+ "base_model.model.transformer.h.9.mlp.dense_4h_to_h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
255
+ "base_model.model.transformer.h.9.mlp.dense_4h_to_h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
256
+ "base_model.model.transformer.h.9.mlp.dense_h_to_4h.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
257
+ "base_model.model.transformer.h.9.mlp.dense_h_to_4h.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
258
+ "base_model.model.transformer.h.9.self_attention.dense.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
259
+ "base_model.model.transformer.h.9.self_attention.dense.lora_B.weight": "adapter_model-00001-of-00003.safetensors",
260
+ "base_model.model.transformer.h.9.self_attention.query_key_value.lora_A.weight": "adapter_model-00001-of-00003.safetensors",
261
+ "base_model.model.transformer.h.9.self_attention.query_key_value.lora_B.weight": "adapter_model-00001-of-00003.safetensors"
262
+ }
263
+ }