Update configuration_internlm.py
Browse files- configuration_internlm.py +8 -33
configuration_internlm.py
CHANGED
@@ -19,9 +19,8 @@
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
22 |
-
from transformers.utils import logging
|
23 |
from transformers.configuration_utils import PretrainedConfig
|
24 |
-
|
25 |
|
26 |
logger = logging.get_logger(__name__)
|
27 |
|
@@ -30,14 +29,11 @@ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
|
30 |
|
31 |
class InternLMConfig(PretrainedConfig):
|
32 |
r"""
|
33 |
-
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
34 |
-
model according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
-
defaults will yield a similar configuration to that of the InternLM-7B.
|
36 |
-
|
37 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
documentation from [`PretrainedConfig`] for more information.
|
39 |
-
|
40 |
-
|
41 |
Args:
|
42 |
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
@@ -50,19 +46,6 @@ class InternLMConfig(PretrainedConfig):
|
|
50 |
Number of hidden layers in the Transformer encoder.
|
51 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
-
num_key_value_heads (`int`, *optional*):
|
54 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
-
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
-
`num_attention_heads`.
|
61 |
-
pretraining_tp (`int`, *optional*, defaults to `1`):
|
62 |
-
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
63 |
-
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
64 |
-
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
65 |
-
issue](https://github.com/pytorch/pytorch/issues/76232).
|
66 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
The non-linear activation function (function or string) in the decoder.
|
68 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
@@ -78,30 +61,25 @@ class InternLMConfig(PretrainedConfig):
|
|
78 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
79 |
Whether to tie weight embeddings
|
80 |
Example:
|
81 |
-
|
82 |
```python
|
83 |
>>> from transformers import InternLMModel, InternLMConfig
|
84 |
-
|
85 |
>>> # Initializing a InternLM internlm-7b style configuration
|
86 |
>>> configuration = InternLMConfig()
|
87 |
-
|
88 |
>>> # Initializing a model from the internlm-7b style configuration
|
89 |
>>> model = InternLMModel(configuration)
|
90 |
-
|
91 |
>>> # Accessing the model configuration
|
92 |
>>> configuration = model.config
|
93 |
```"""
|
94 |
model_type = "internlm"
|
95 |
_auto_class = "AutoConfig"
|
96 |
|
97 |
-
def __init__(
|
98 |
self,
|
99 |
vocab_size=103168,
|
100 |
hidden_size=4096,
|
101 |
intermediate_size=11008,
|
102 |
num_hidden_layers=32,
|
103 |
num_attention_heads=32,
|
104 |
-
num_key_value_heads=None,
|
105 |
hidden_act="silu",
|
106 |
max_position_embeddings=2048,
|
107 |
initializer_range=0.02,
|
@@ -112,6 +90,7 @@ class InternLMConfig(PretrainedConfig):
|
|
112 |
eos_token_id=2,
|
113 |
tie_word_embeddings=False,
|
114 |
bias=True,
|
|
|
115 |
**kwargs,
|
116 |
):
|
117 |
self.vocab_size = vocab_size
|
@@ -120,20 +99,16 @@ class InternLMConfig(PretrainedConfig):
|
|
120 |
self.intermediate_size = intermediate_size
|
121 |
self.num_hidden_layers = num_hidden_layers
|
122 |
self.num_attention_heads = num_attention_heads
|
123 |
-
|
124 |
-
if num_key_value_heads is None:
|
125 |
-
num_key_value_heads = num_attention_heads
|
126 |
-
self.num_key_value_heads = num_key_value_heads
|
127 |
-
|
128 |
self.hidden_act = hidden_act
|
129 |
self.initializer_range = initializer_range
|
130 |
self.rms_norm_eps = rms_norm_eps
|
131 |
self.use_cache = use_cache
|
132 |
self.bias = bias
|
|
|
133 |
super().__init__(
|
134 |
pad_token_id=pad_token_id,
|
135 |
bos_token_id=bos_token_id,
|
136 |
eos_token_id=eos_token_id,
|
137 |
tie_word_embeddings=tie_word_embeddings,
|
138 |
**kwargs,
|
139 |
-
)
|
|
|
19 |
# limitations under the License.
|
20 |
""" InternLM model configuration"""
|
21 |
|
|
|
22 |
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
|
25 |
logger = logging.get_logger(__name__)
|
26 |
|
|
|
29 |
|
30 |
class InternLMConfig(PretrainedConfig):
|
31 |
r"""
|
32 |
+
This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
|
33 |
+
an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
|
34 |
+
configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
|
|
|
35 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
37 |
Args:
|
38 |
vocab_size (`int`, *optional*, defaults to 32000):
|
39 |
Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
|
|
|
46 |
Number of hidden layers in the Transformer encoder.
|
47 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
48 |
Number of attention heads for each attention layer in the Transformer encoder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
50 |
The non-linear activation function (function or string) in the decoder.
|
51 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
|
|
61 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
62 |
Whether to tie weight embeddings
|
63 |
Example:
|
|
|
64 |
```python
|
65 |
>>> from transformers import InternLMModel, InternLMConfig
|
|
|
66 |
>>> # Initializing a InternLM internlm-7b style configuration
|
67 |
>>> configuration = InternLMConfig()
|
|
|
68 |
>>> # Initializing a model from the internlm-7b style configuration
|
69 |
>>> model = InternLMModel(configuration)
|
|
|
70 |
>>> # Accessing the model configuration
|
71 |
>>> configuration = model.config
|
72 |
```"""
|
73 |
model_type = "internlm"
|
74 |
_auto_class = "AutoConfig"
|
75 |
|
76 |
+
def __init__( # pylint: disable=W0102
|
77 |
self,
|
78 |
vocab_size=103168,
|
79 |
hidden_size=4096,
|
80 |
intermediate_size=11008,
|
81 |
num_hidden_layers=32,
|
82 |
num_attention_heads=32,
|
|
|
83 |
hidden_act="silu",
|
84 |
max_position_embeddings=2048,
|
85 |
initializer_range=0.02,
|
|
|
90 |
eos_token_id=2,
|
91 |
tie_word_embeddings=False,
|
92 |
bias=True,
|
93 |
+
rotary={"base": 10000, "type": "dynamic"}, # pylint: disable=W0102
|
94 |
**kwargs,
|
95 |
):
|
96 |
self.vocab_size = vocab_size
|
|
|
99 |
self.intermediate_size = intermediate_size
|
100 |
self.num_hidden_layers = num_hidden_layers
|
101 |
self.num_attention_heads = num_attention_heads
|
|
|
|
|
|
|
|
|
|
|
102 |
self.hidden_act = hidden_act
|
103 |
self.initializer_range = initializer_range
|
104 |
self.rms_norm_eps = rms_norm_eps
|
105 |
self.use_cache = use_cache
|
106 |
self.bias = bias
|
107 |
+
self.rotary = rotary
|
108 |
super().__init__(
|
109 |
pad_token_id=pad_token_id,
|
110 |
bos_token_id=bos_token_id,
|
111 |
eos_token_id=eos_token_id,
|
112 |
tie_word_embeddings=tie_word_embeddings,
|
113 |
**kwargs,
|
114 |
+
)
|