File size: 975 Bytes
294a033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
---
{}
---
### Advertisement Cap on Banner Classification

**Description:** Automatically classify and assign appropriate advertisement cap to banners to streamline manufacturing and delivery processes.

## How to Use
Here is how to use this model to classify text into different categories:

        from transformers import AutoModelForSequenceClassification, AutoTokenizer
        
        model_name = "interneuronai/advertisement_cap_on_banner_classification_bert"
        model = AutoModelForSequenceClassification.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        
        def classify_text(text):
            inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
            outputs = model(**inputs)
            predictions = outputs.logits.argmax(-1)
            return predictions.item()
        
        text = "Your text here"
        print("Category:", classify_text(text))