--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NHS-distilbert-binary-random results: [] --- # NHS-distilbert-binary-random This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5121 - Accuracy: 0.8019 - Precision: 0.7972 - Recall: 0.8065 - F1: 0.7988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1385 | 1.0 | 397 | 0.4277 | 0.8069 | 0.8004 | 0.7989 | 0.7996 | | 0.0481 | 2.0 | 794 | 0.4580 | 0.7931 | 0.7894 | 0.7990 | 0.7903 | | 2.0213 | 3.0 | 1191 | 0.5121 | 0.8019 | 0.7972 | 0.8065 | 0.7988 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2