NeMo
English
chemistry
File size: 4,559 Bytes
c3a645e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: cc-by-nc-4.0
language:
- en
tags:
- chemistry
---

<h1 align="center"> nach0  </h1>
<h3 align="center"> Multimodal Natural and Chemical Languages Foundation Model </h3>
<p align="center">
  📃 <a href="https://arxiv.org/abs/2311.12410" target="_blank">Paper</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_base" target="_blank">Base nach0</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_large" target="_blank">Large nach0</a> <br>
</p>
<div align=center><img src="images/nach0_Pub_2.png" width="70%" height="70%" /></div>
<h2 id="1">Overview</h2>

- nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge.

- We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions. 

- Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups.

<h2 id="1">Tasks</h2>
Datasets used for training and evaluation. Colour represents the type of tasks. Yellow and blue datasets are single-domain, typically requiring regression/classification losses or generation in the target domain (natural language or SMILES strings). Gradients from yellow to blue represent cross-domain generation tasks that require natural language input and SMILES output, or vise versa.
<div align=center><img src="images/nach0_Pub_1.png" width="70%" height="70%" /></div>

<h2> Model Usage Guide</h2>

To use model for the inference follow the steps bellow:

1. Preprocess the input by replacing the atom tokens with special tokens. 

  ```python
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
  import re
  from rdkit.Chem import MolFromSmiles
  import string
  from rdkit import RDLogger
  RDLogger.DisableLog('rdApp.*')
  atoms_tokens = ['Ag','Al','As','Au','B','Ba','Bi','Br','C','Ca',
                'Cd','Cl','Co','Cr','Cs','Cu','F','Fe','Ga','Gd',
                'Ge','H','Hg','I','In','K','Li','M','Mg','Mn',
                'Mo','N','Na','O','P','Pt','Ru','S','Sb','Sc',
                'Se','Si','Sn','V','W','Z','Zn','c','e','n','o','p','s']
  atoms_tokens = sorted(atoms_tokens, key=lambda s: len(s), reverse=True)
  SMI_REGEX_PATTERN = r"(\[|\]|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9]|" + \
                                                                    '|'.join(atoms_tokens) + ")"
  regex = re.compile(SMI_REGEX_PATTERN)
  def clean_output_sequence(output_sequence):
      return output_sequence.replace('</s>', '').replace('<sm_', '').replace(' sm_', '').replace('>', '').strip()
  def add_special_symbols(text):
    output = []
    for word in text.split():
        tokens = [token for token in regex.findall(word)]
        if len(tokens) > 4 and (word == ''.join(tokens)) and MolFromSmiles(word):
            output.append(''.join(['<sm_'+t+'>' for t in tokens]))
        else:
            output.append(word)
    return ' '.join(output)
  PROMPT = """Given the following reactants and reagents, please provide a possible product. 
            CCN(CC)CC.CCN=C=NCCCN(C)C.CN(C)C=O.Cl.NC1=CC=C(Cl)C=C1N.O.O=C(O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12.OC1=CC=CC2=C1N=NN2.[Cl-].[Na+]"""
  PROMPT = add_special_symbols(PROMPT)
  ```
2. Load the model checkoint

  ```python
    model = AutoModelForSeq2SeqLM.from_pretrained('insilicomedicine/nach0_base')
    tokenizer = AutoTokenizer.from_pretrained('insilicomedicine/nach0_base')
  ```

3. Generate response to prompt and replace special tokens with corresponding atom tokens
  ```python
  input_text_ids = tokenizer(PROMPT, padding="longest", max_length=512, truncation=True, return_tensors="pt")
  generated_text_ids = model.generate(**input_text_ids, do_sample=True, top_k=100, top_p=0.95, max_length=512)
  generated_text = tokenizer.batch_decode(generated_text_ids, skip_special_tokens=True)[0]
  generated_text = clean_output_sequence(generated_text)
  ```
  ```python
  # NC1=CC=C(Cl)C=C1NC(=O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12
  ```


<h3> References</h3>
If you use our repository, please cite the following related paper:

```
@inproceedings{....
}
```