kuznetsov-insilico commited on
Commit
04dbd58
1 Parent(s): c1c695f

readme changes

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -1,7 +1,6 @@
1
  ---
2
  tags:
3
  - chemistry
4
- - medical
5
  widget:
6
  - text: <LIGAND>
7
  example_title: Generate molecule
@@ -21,8 +20,8 @@ The pretrained model is capable of zero-shot molecule generation and conformer g
21
  the distribution of the [Uni-Mol](https://github.com/deepmodeling/Uni-Mol) dataset.
22
  We also expose finetuned models:
23
 
24
- - For the model finetuned on GEOM-DRUGS, visit [huggingface.co/insilicomedicine/BindGPT-GEOM](https://huggingface.co/insilicomedicine/BindGPT-GEOM)
25
- - For the model finetuned with Reinforcement Learning on CrossDocked, visit [huggingface.co/insilicomedicine/BindGPT-RL](https://huggingface.co/insilicomedicine/BindGPT-RL)
26
 
27
 
28
  ## Unconditional generation
@@ -40,8 +39,8 @@ https://github.com/insilicomedicine/bindgpt
40
  # Download model from Hugginface:
41
  from transformers import AutoTokenizer, AutoModelForCausalLM
42
 
43
- tokenizer = AutoTokenizer.from_pretrained("artemZholus/BindGPT")
44
- model = AutoModelForCausalLM.from_pretrained("artemZholus/BindGPT").cuda()
45
 
46
  # Generate 10 tokenized molecules without condition
47
  NUM_SAMPLES = 10
 
1
  ---
2
  tags:
3
  - chemistry
 
4
  widget:
5
  - text: <LIGAND>
6
  example_title: Generate molecule
 
20
  the distribution of the [Uni-Mol](https://github.com/deepmodeling/Uni-Mol) dataset.
21
  We also expose finetuned models:
22
 
23
+ - For the model finetuned on GEOM-DRUGS, visit [huggingface.co/insilicomedicine/bindgpt_finetuned](https://huggingface.co/insilicomedicine/bindgpt_finetuned)
24
+ - The model finetuned with Reinforcement Learning on CrossDocked is coming soon
25
 
26
 
27
  ## Unconditional generation
 
39
  # Download model from Hugginface:
40
  from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
+ tokenizer = AutoTokenizer.from_pretrained("insilicomedicine/bindgpt_pretrained")
43
+ model = AutoModelForCausalLM.from_pretrained("insilicomedicine/bindgpt_pretrained").cuda()
44
 
45
  # Generate 10 tokenized molecules without condition
46
  NUM_SAMPLES = 10