--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-greek results: [] --- # wav2vec2-large-xls-r-300m-greek This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.6831 - Wer: 0.4287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0798 | 4.42 | 500 | 3.0010 | 1.0012 | | 1.4336 | 8.85 | 1000 | 0.8481 | 0.6911 | | 1.2062 | 13.27 | 1500 | 0.7312 | 0.6333 | | 1.0481 | 17.7 | 2000 | 0.6850 | 0.5359 | | 0.9837 | 22.12 | 2500 | 0.6337 | 0.5316 | | 0.9108 | 26.55 | 3000 | 0.6258 | 0.5079 | | 0.8439 | 30.97 | 3500 | 0.6301 | 0.4888 | | 0.7901 | 35.4 | 4000 | 0.6245 | 0.4977 | | 0.7669 | 39.82 | 4500 | 0.6164 | 0.4672 | | 0.7196 | 44.25 | 5000 | 0.6039 | 0.4688 | | 0.6715 | 48.67 | 5500 | 0.5900 | 0.4573 | | 0.6441 | 53.1 | 6000 | 0.7002 | 0.4798 | | 0.5938 | 57.52 | 6500 | 0.6249 | 0.4579 | | 0.5541 | 61.95 | 7000 | 0.6184 | 0.4425 | | 0.5506 | 66.37 | 7500 | 0.6963 | 0.4585 | | 0.4998 | 70.8 | 8000 | 0.6778 | 0.4468 | | 0.4729 | 75.22 | 8500 | 0.6383 | 0.4393 | | 0.4535 | 79.65 | 9000 | 0.6593 | 0.4369 | | 0.4358 | 84.07 | 9500 | 0.6914 | 0.4422 | | 0.402 | 88.5 | 10000 | 0.6744 | 0.4269 | | 0.3946 | 92.92 | 10500 | 0.6895 | 0.4275 | | 0.3734 | 97.35 | 11000 | 0.6889 | 0.4320 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0