resolve symlinks
Browse files- README.md +16 -0
- configuration_gptpangu.py +0 -1
- configuration_gptpangu.py +56 -0
- modeling_gptpangu.py +0 -1
- modeling_gptpangu.py +549 -0
- tokenization_gptpangu.py +0 -1
- tokenization_gptpangu.py +42 -0
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pangu-Alpha 2.6B
|
2 |
+
|
3 |
+
## Usage
|
4 |
+
|
5 |
+
Currently Pangu model is not supported by transformers,
|
6 |
+
so `trust_remote_code=True` is required to execute custom model.
|
7 |
+
|
8 |
+
```python
|
9 |
+
from transformers import TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("imone/pangu_2.6B", trust_remote_code=True)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained("imone/pangu_2.6B", trust_remote_code=True)
|
13 |
+
|
14 |
+
text_generator = TextGenerationPipeline(model, tokenizer)
|
15 |
+
text_generator("ä¸å›½å’Œç¾Žå›½å’Œæ—¥æœ¬å’Œæ³•å›½å’ŒåŠ 拿大和澳大利亚的首都分别是哪里?")
|
16 |
+
```
|
configuration_gptpangu.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
../../model/configuration_gptpangu.py
|
|
|
|
configuration_gptpangu.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class GPTPanguConfig(PretrainedConfig):
|
5 |
+
model_type = "gpt_pangu"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=40000,
|
11 |
+
max_position_embeddings=1024,
|
12 |
+
hidden_size=2560,
|
13 |
+
intermediate_size=None,
|
14 |
+
num_layers=32,
|
15 |
+
num_heads=32,
|
16 |
+
activation_function="gelu",
|
17 |
+
resid_pdrop=0.1,
|
18 |
+
embd_pdrop=0.1,
|
19 |
+
attn_pdrop=0.1,
|
20 |
+
layer_norm_epsilon=1e-5,
|
21 |
+
scale_attn_weights=True,
|
22 |
+
initializer_range=0.02,
|
23 |
+
summary_type="cls_index",
|
24 |
+
summary_use_proj=True,
|
25 |
+
summary_activation=None,
|
26 |
+
summary_proj_to_labels=True,
|
27 |
+
summary_first_dropout=0.1,
|
28 |
+
use_cache=True,
|
29 |
+
bos_token_id=9,
|
30 |
+
eos_token_id=9,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.vocab_size = vocab_size
|
34 |
+
self.max_position_embeddings = max_position_embeddings
|
35 |
+
self.hidden_size = hidden_size
|
36 |
+
self.intermediate_size = intermediate_size
|
37 |
+
self.num_layers = num_layers
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.activation_function = activation_function
|
40 |
+
self.resid_pdrop = resid_pdrop
|
41 |
+
self.embd_pdrop = embd_pdrop
|
42 |
+
self.attn_pdrop = attn_pdrop
|
43 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
44 |
+
self.scale_attn_weights = scale_attn_weights
|
45 |
+
self.initializer_range = initializer_range
|
46 |
+
self.summary_type = summary_type
|
47 |
+
self.summary_use_proj = summary_use_proj
|
48 |
+
self.summary_activation = summary_activation
|
49 |
+
self.summary_first_dropout = summary_first_dropout
|
50 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
51 |
+
self.use_cache = use_cache
|
52 |
+
|
53 |
+
self.bos_token_id = bos_token_id
|
54 |
+
self.eos_token_id = eos_token_id
|
55 |
+
|
56 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
modeling_gptpangu.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
../../model/modeling_gptpangu.py
|
|
|
|
modeling_gptpangu.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch PanguAlpha GPT2 Model"""
|
2 |
+
from .configuration_gptpangu import GPTPanguConfig
|
3 |
+
|
4 |
+
from typing import Tuple
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from transformers.activations import ACT2FN
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
class GPTPanguAttention(nn.Module):
|
20 |
+
def __init__(self, config):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
max_positions = config.max_position_embeddings
|
24 |
+
self.register_buffer(
|
25 |
+
"bias",
|
26 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
27 |
+
1, 1, max_positions, max_positions
|
28 |
+
),
|
29 |
+
)
|
30 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
31 |
+
|
32 |
+
self.embed_dim = config.hidden_size
|
33 |
+
self.num_heads = config.num_heads
|
34 |
+
self.head_dim = self.embed_dim // self.num_heads
|
35 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
36 |
+
raise ValueError(
|
37 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
38 |
+
)
|
39 |
+
|
40 |
+
self.scale_attn_weights = config.scale_attn_weights
|
41 |
+
|
42 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
43 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
44 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
45 |
+
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
|
46 |
+
|
47 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
48 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
49 |
+
|
50 |
+
|
51 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
52 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
53 |
+
|
54 |
+
if self.scale_attn_weights:
|
55 |
+
attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)
|
56 |
+
|
57 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
58 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
|
59 |
+
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
60 |
+
|
61 |
+
if attention_mask is not None:
|
62 |
+
# Apply the attention mask
|
63 |
+
attn_weights = attn_weights + attention_mask
|
64 |
+
|
65 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
66 |
+
|
67 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
68 |
+
attn_weights = attn_weights.type(value.dtype)
|
69 |
+
attn_weights = self.attn_dropout(attn_weights)
|
70 |
+
|
71 |
+
# Mask heads if we want to
|
72 |
+
if head_mask is not None:
|
73 |
+
attn_weights = attn_weights * head_mask
|
74 |
+
|
75 |
+
attn_output = torch.matmul(attn_weights, value)
|
76 |
+
|
77 |
+
return attn_output, attn_weights
|
78 |
+
|
79 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
80 |
+
"""
|
81 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
82 |
+
"""
|
83 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
84 |
+
tensor = tensor.view(*new_shape)
|
85 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
86 |
+
|
87 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
88 |
+
"""
|
89 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
90 |
+
"""
|
91 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
92 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
93 |
+
return tensor.view(new_shape)
|
94 |
+
|
95 |
+
def forward(
|
96 |
+
self,
|
97 |
+
hidden_states,
|
98 |
+
layer_past=None,
|
99 |
+
attention_mask=None,
|
100 |
+
head_mask=None,
|
101 |
+
custom_query=None,
|
102 |
+
use_cache=False,
|
103 |
+
output_attentions=False,
|
104 |
+
):
|
105 |
+
query = self.q_proj(custom_query) if custom_query is not None else self.q_proj(hidden_states)
|
106 |
+
key = self.k_proj(hidden_states)
|
107 |
+
value = self.v_proj(hidden_states)
|
108 |
+
|
109 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
110 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
111 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
112 |
+
|
113 |
+
if layer_past is not None:
|
114 |
+
past_key, past_value = layer_past
|
115 |
+
key = torch.cat((past_key, key), dim=-2)
|
116 |
+
value = torch.cat((past_value, value), dim=-2)
|
117 |
+
|
118 |
+
if use_cache is True:
|
119 |
+
present = (key, value)
|
120 |
+
else:
|
121 |
+
present = None
|
122 |
+
|
123 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
124 |
+
|
125 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
126 |
+
attn_output = self.c_proj(attn_output)
|
127 |
+
attn_output = self.resid_dropout(attn_output)
|
128 |
+
|
129 |
+
outputs = (attn_output, present)
|
130 |
+
if output_attentions:
|
131 |
+
outputs += (attn_weights,)
|
132 |
+
|
133 |
+
return outputs # a, present, (attentions)
|
134 |
+
|
135 |
+
|
136 |
+
class GPTPanguMLP(nn.Module):
|
137 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size
|
138 |
+
super().__init__()
|
139 |
+
embed_dim = config.hidden_size
|
140 |
+
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
141 |
+
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
142 |
+
self.act = ACT2FN[config.activation_function]
|
143 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
144 |
+
|
145 |
+
def forward(self, hidden_states):
|
146 |
+
hidden_states = self.c_fc(hidden_states)
|
147 |
+
hidden_states = self.act(hidden_states)
|
148 |
+
hidden_states = self.c_proj(hidden_states)
|
149 |
+
hidden_states = self.dropout(hidden_states)
|
150 |
+
return hidden_states
|
151 |
+
|
152 |
+
|
153 |
+
class GPTPanguBlock(nn.Module):
|
154 |
+
def __init__(self, config):
|
155 |
+
super().__init__()
|
156 |
+
hidden_size = config.hidden_size
|
157 |
+
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
|
158 |
+
|
159 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
160 |
+
self.attn = GPTPanguAttention(config)
|
161 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
162 |
+
self.mlp = GPTPanguMLP(inner_dim, config)
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self,
|
166 |
+
hidden_states,
|
167 |
+
layer_past=None,
|
168 |
+
attention_mask=None,
|
169 |
+
head_mask=None,
|
170 |
+
custom_query=None,
|
171 |
+
use_cache=False,
|
172 |
+
output_attentions=False,
|
173 |
+
):
|
174 |
+
residual = hidden_states
|
175 |
+
hidden_states = self.ln_1(hidden_states)
|
176 |
+
attn_outputs = self.attn(
|
177 |
+
hidden_states,
|
178 |
+
layer_past=layer_past,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
head_mask=head_mask,
|
181 |
+
custom_query=custom_query,
|
182 |
+
use_cache=use_cache,
|
183 |
+
output_attentions=output_attentions,
|
184 |
+
)
|
185 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
186 |
+
outputs = attn_outputs[1:]
|
187 |
+
# residual connection
|
188 |
+
hidden_states = attn_output + residual
|
189 |
+
|
190 |
+
residual = hidden_states
|
191 |
+
hidden_states = self.ln_2(hidden_states)
|
192 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
193 |
+
# residual connection
|
194 |
+
hidden_states = residual + feed_forward_hidden_states
|
195 |
+
|
196 |
+
if use_cache:
|
197 |
+
outputs = (hidden_states,) + outputs
|
198 |
+
else:
|
199 |
+
outputs = (hidden_states,) + outputs[1:]
|
200 |
+
|
201 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
202 |
+
|
203 |
+
|
204 |
+
class GPTPanguPreTrainedModel(PreTrainedModel):
|
205 |
+
"""
|
206 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
207 |
+
models.
|
208 |
+
"""
|
209 |
+
|
210 |
+
config_class = GPTPanguConfig
|
211 |
+
base_model_prefix = "transformer"
|
212 |
+
supports_gradient_checkpointing = True
|
213 |
+
|
214 |
+
def __init__(self, *inputs, **kwargs):
|
215 |
+
super().__init__(*inputs, **kwargs)
|
216 |
+
|
217 |
+
def _init_weights(self, module):
|
218 |
+
"""Initialize the weights."""
|
219 |
+
if isinstance(module, (nn.Linear,)):
|
220 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
221 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
222 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
223 |
+
if module.bias is not None:
|
224 |
+
module.bias.data.zero_()
|
225 |
+
elif isinstance(module, nn.Embedding):
|
226 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
227 |
+
if module.padding_idx is not None:
|
228 |
+
module.weight.data[module.padding_idx].zero_()
|
229 |
+
elif isinstance(module, nn.LayerNorm):
|
230 |
+
module.bias.data.zero_()
|
231 |
+
module.weight.data.fill_(1.0)
|
232 |
+
|
233 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
234 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
235 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
236 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
237 |
+
#
|
238 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
239 |
+
for name, p in module.named_parameters():
|
240 |
+
if "c_proj" in name and "weight" in name:
|
241 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
242 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_layers)))
|
243 |
+
|
244 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
245 |
+
if isinstance(module, GPTPanguModel):
|
246 |
+
module.gradient_checkpointing = value
|
247 |
+
|
248 |
+
|
249 |
+
class GPTPanguModel(GPTPanguPreTrainedModel):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__(config)
|
252 |
+
|
253 |
+
self.embed_dim = config.hidden_size
|
254 |
+
|
255 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
256 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
257 |
+
self.wqe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
258 |
+
|
259 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
260 |
+
self.h = nn.ModuleList([GPTPanguBlock(config) for _ in range(config.num_layers)])
|
261 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
262 |
+
|
263 |
+
self.gradient_checkpointing = False
|
264 |
+
# Initialize weights and apply final processing
|
265 |
+
self.post_init()
|
266 |
+
|
267 |
+
def get_input_embeddings(self):
|
268 |
+
return self.wte
|
269 |
+
|
270 |
+
def set_input_embeddings(self, new_embeddings):
|
271 |
+
self.wte = new_embeddings
|
272 |
+
|
273 |
+
def forward(
|
274 |
+
self,
|
275 |
+
input_ids=None,
|
276 |
+
past_key_values=None,
|
277 |
+
attention_mask=None,
|
278 |
+
token_type_ids=None,
|
279 |
+
position_ids=None,
|
280 |
+
head_mask=None,
|
281 |
+
inputs_embeds=None,
|
282 |
+
use_cache=None,
|
283 |
+
output_attentions=None,
|
284 |
+
output_hidden_states=None,
|
285 |
+
return_dict=None,
|
286 |
+
):
|
287 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
288 |
+
output_hidden_states = (
|
289 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
290 |
+
)
|
291 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
292 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
293 |
+
|
294 |
+
if input_ids is not None and inputs_embeds is not None:
|
295 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
296 |
+
elif input_ids is not None:
|
297 |
+
input_shape = input_ids.size()
|
298 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
299 |
+
batch_size = input_ids.shape[0]
|
300 |
+
elif inputs_embeds is not None:
|
301 |
+
input_shape = inputs_embeds.size()[:-1]
|
302 |
+
batch_size = inputs_embeds.shape[0]
|
303 |
+
else:
|
304 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
305 |
+
|
306 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
307 |
+
|
308 |
+
if token_type_ids is not None:
|
309 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
310 |
+
if position_ids is not None:
|
311 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
312 |
+
|
313 |
+
if past_key_values is None:
|
314 |
+
past_length = 0
|
315 |
+
past_key_values = tuple([None] * len(self.h))
|
316 |
+
else:
|
317 |
+
past_length = past_key_values[0][0].size(-2)
|
318 |
+
if position_ids is None:
|
319 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
320 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
321 |
+
|
322 |
+
# GPT2Attention mask.
|
323 |
+
if attention_mask is not None:
|
324 |
+
if batch_size <= 0:
|
325 |
+
raise ValueError("batch_size has to be defined and > 0")
|
326 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
327 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
328 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
329 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
330 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
331 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
332 |
+
attention_mask = attention_mask[:, None, None, :]
|
333 |
+
|
334 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
335 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
336 |
+
# positions we want to attend and -10000.0 for masked positions.
|
337 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
338 |
+
# effectively the same as removing these entirely.
|
339 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
340 |
+
attention_mask = (1.0 - attention_mask) * -10000.0
|
341 |
+
|
342 |
+
# Prepare head mask if needed
|
343 |
+
# 1.0 in head_mask indicate we keep the head
|
344 |
+
# attention_probs has shape bsz x num_heads x N x N
|
345 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
346 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
347 |
+
|
348 |
+
if inputs_embeds is None:
|
349 |
+
inputs_embeds = self.wte(input_ids)
|
350 |
+
position_embeds = self.wpe(position_ids)
|
351 |
+
hidden_states = inputs_embeds + position_embeds
|
352 |
+
|
353 |
+
if token_type_ids is not None:
|
354 |
+
token_type_embeds = self.wte(token_type_ids)
|
355 |
+
hidden_states = hidden_states + token_type_embeds
|
356 |
+
|
357 |
+
hidden_states = self.drop(hidden_states)
|
358 |
+
|
359 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
360 |
+
|
361 |
+
# top attention custom query
|
362 |
+
last_layer_id = len(self.h) - 1
|
363 |
+
query_embeds = self.wqe(position_ids)
|
364 |
+
|
365 |
+
presents = () if use_cache else None
|
366 |
+
all_self_attentions = () if output_attentions else None
|
367 |
+
all_hidden_states = () if output_hidden_states else None
|
368 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
369 |
+
# Final LayerNorm before last query layer
|
370 |
+
if i == last_layer_id:
|
371 |
+
hidden_states = self.ln_f(hidden_states)
|
372 |
+
|
373 |
+
if output_hidden_states:
|
374 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
375 |
+
|
376 |
+
if self.gradient_checkpointing and self.training:
|
377 |
+
|
378 |
+
if use_cache:
|
379 |
+
logger.warning(
|
380 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
381 |
+
)
|
382 |
+
use_cache = False
|
383 |
+
|
384 |
+
def create_custom_forward(module):
|
385 |
+
def custom_forward(*inputs):
|
386 |
+
# None for past_key_value
|
387 |
+
return module(*inputs, use_cache, output_attentions)
|
388 |
+
|
389 |
+
return custom_forward
|
390 |
+
|
391 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
392 |
+
create_custom_forward(block),
|
393 |
+
hidden_states=hidden_states,
|
394 |
+
layer_past=None,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
head_mask=head_mask[i],
|
397 |
+
# custom query
|
398 |
+
custom_query=query_embeds if i == last_layer_id else None,
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
outputs = block(
|
402 |
+
hidden_states,
|
403 |
+
layer_past=layer_past,
|
404 |
+
attention_mask=attention_mask,
|
405 |
+
head_mask=head_mask[i],
|
406 |
+
# custom query
|
407 |
+
custom_query=query_embeds if i == last_layer_id else None,
|
408 |
+
use_cache=use_cache,
|
409 |
+
output_attentions=output_attentions,
|
410 |
+
)
|
411 |
+
|
412 |
+
hidden_states = outputs[0]
|
413 |
+
if use_cache is True:
|
414 |
+
presents = presents + (outputs[1],)
|
415 |
+
|
416 |
+
if output_attentions:
|
417 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
418 |
+
|
419 |
+
hidden_states = hidden_states.view(*output_shape)
|
420 |
+
# Add last hidden state
|
421 |
+
if output_hidden_states:
|
422 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
426 |
+
|
427 |
+
return BaseModelOutputWithPast(
|
428 |
+
last_hidden_state=hidden_states,
|
429 |
+
past_key_values=presents,
|
430 |
+
hidden_states=all_hidden_states,
|
431 |
+
attentions=all_self_attentions,
|
432 |
+
)
|
433 |
+
|
434 |
+
|
435 |
+
class GPTPanguForCausalLM(GPTPanguPreTrainedModel):
|
436 |
+
def __init__(self, config):
|
437 |
+
super().__init__(config)
|
438 |
+
self.transformer = GPTPanguModel(config)
|
439 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
440 |
+
|
441 |
+
# Initialize weights and apply final processing
|
442 |
+
self.post_init()
|
443 |
+
|
444 |
+
def get_output_embeddings(self):
|
445 |
+
return self.lm_head
|
446 |
+
|
447 |
+
def set_output_embeddings(self, new_embeddings):
|
448 |
+
self.lm_head = new_embeddings
|
449 |
+
|
450 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
451 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
452 |
+
# only last token for inputs_ids if past is defined in kwargs
|
453 |
+
if past:
|
454 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
455 |
+
if token_type_ids is not None:
|
456 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
457 |
+
|
458 |
+
attention_mask = kwargs.get("attention_mask", None)
|
459 |
+
position_ids = kwargs.get("position_ids", None)
|
460 |
+
|
461 |
+
if attention_mask is not None and position_ids is None:
|
462 |
+
# create position_ids on the fly for batch generation
|
463 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
464 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
465 |
+
if past:
|
466 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
467 |
+
else:
|
468 |
+
position_ids = None
|
469 |
+
return {
|
470 |
+
"input_ids": input_ids,
|
471 |
+
"past_key_values": past,
|
472 |
+
"use_cache": kwargs.get("use_cache"),
|
473 |
+
"position_ids": position_ids,
|
474 |
+
"attention_mask": attention_mask,
|
475 |
+
"token_type_ids": token_type_ids,
|
476 |
+
}
|
477 |
+
|
478 |
+
def forward(
|
479 |
+
self,
|
480 |
+
input_ids=None,
|
481 |
+
past_key_values=None,
|
482 |
+
attention_mask=None,
|
483 |
+
token_type_ids=None,
|
484 |
+
position_ids=None,
|
485 |
+
head_mask=None,
|
486 |
+
inputs_embeds=None,
|
487 |
+
labels=None,
|
488 |
+
use_cache=None,
|
489 |
+
output_attentions=None,
|
490 |
+
output_hidden_states=None,
|
491 |
+
return_dict=None,
|
492 |
+
):
|
493 |
+
r"""
|
494 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
495 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
496 |
+
``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
|
497 |
+
``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
|
498 |
+
"""
|
499 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
500 |
+
|
501 |
+
transformer_outputs = self.transformer(
|
502 |
+
input_ids,
|
503 |
+
past_key_values=past_key_values,
|
504 |
+
attention_mask=attention_mask,
|
505 |
+
token_type_ids=token_type_ids,
|
506 |
+
position_ids=position_ids,
|
507 |
+
head_mask=head_mask,
|
508 |
+
inputs_embeds=inputs_embeds,
|
509 |
+
use_cache=use_cache,
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
output_hidden_states=output_hidden_states,
|
512 |
+
return_dict=return_dict,
|
513 |
+
)
|
514 |
+
hidden_states = transformer_outputs[0]
|
515 |
+
|
516 |
+
lm_logits = self.lm_head(hidden_states)
|
517 |
+
|
518 |
+
loss = None
|
519 |
+
if labels is not None:
|
520 |
+
# Shift so that tokens < n predict n
|
521 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
522 |
+
shift_labels = labels[..., 1:].contiguous()
|
523 |
+
# Flatten the tokens
|
524 |
+
loss_fct = nn.CrossEntropyLoss()
|
525 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
526 |
+
|
527 |
+
if not return_dict:
|
528 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
529 |
+
return ((loss,) + output) if loss is not None else output
|
530 |
+
|
531 |
+
return CausalLMOutputWithPast(
|
532 |
+
loss=loss,
|
533 |
+
logits=lm_logits,
|
534 |
+
past_key_values=transformer_outputs.past_key_values,
|
535 |
+
hidden_states=transformer_outputs.hidden_states,
|
536 |
+
attentions=transformer_outputs.attentions,
|
537 |
+
)
|
538 |
+
|
539 |
+
@staticmethod
|
540 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
541 |
+
"""
|
542 |
+
This function is used to re-order the :obj:`past_key_values` cache if
|
543 |
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
544 |
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
545 |
+
"""
|
546 |
+
return tuple(
|
547 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
548 |
+
for layer_past in past
|
549 |
+
)
|
tokenization_gptpangu.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
../../model/tokenization_gptpangu.py
|
|
|
|
tokenization_gptpangu.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
2 |
+
|
3 |
+
import sentencepiece
|
4 |
+
import jieba
|
5 |
+
|
6 |
+
|
7 |
+
class GPTPanguTokenizer(PreTrainedTokenizer):
|
8 |
+
# Ref: https://git.openi.org.cn/PCL-Platform.Intelligence/PanGu-Alpha/src/branch/master/tokenization_jieba.py
|
9 |
+
vocab_files_names = {
|
10 |
+
"model_file": "vocab.model"
|
11 |
+
}
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
model_file,
|
16 |
+
**kwargs
|
17 |
+
):
|
18 |
+
super().__init__()
|
19 |
+
|
20 |
+
self.sp = sentencepiece.SentencePieceProcessor()
|
21 |
+
self.sp.Load(model_file=model_file)
|
22 |
+
self.translator = str.maketrans(" \n", "\u2582\u2583")
|
23 |
+
|
24 |
+
# special token ids
|
25 |
+
self.eos_token_id = self.sp.piece_to_id("<eot>")
|
26 |
+
|
27 |
+
def tokenize(self, text, **kwargs):
|
28 |
+
""" Tokenize a string. """
|
29 |
+
seg_list = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)]
|
30 |
+
new_seg = " ".join(seg_list)
|
31 |
+
return self.sp.encode(new_seg)
|
32 |
+
|
33 |
+
def convert_tokens_to_ids(self, tokens):
|
34 |
+
return tokens
|
35 |
+
|
36 |
+
def convert_ids_to_tokens(self, ids):
|
37 |
+
return self.decode(ids)
|
38 |
+
|
39 |
+
def decode(self, tokens, **kwargs):
|
40 |
+
text = self.sp.decode(tokens)
|
41 |
+
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n')
|
42 |
+
return text
|