--- license: apache-2.0 library_name: peft tags: - unsloth - generated_from_trainer base_model: mistralai/Mistral-7B-v0.3 model-index: - name: mistral_7b_v_MetaMathQA_40K_ortho_scale15 results: [] --- # mistral_7b_v_MetaMathQA_40K_ortho_scale15 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7222 | 0.0211 | 13 | 0.5929 | | 0.5524 | 0.0421 | 26 | 0.5670 | | 0.5394 | 0.0632 | 39 | 0.5550 | | 0.5277 | 0.0842 | 52 | 0.5458 | | 0.5128 | 0.1053 | 65 | 0.5396 | | 0.5149 | 0.1264 | 78 | 0.5328 | | 0.4985 | 0.1474 | 91 | 0.5263 | | 0.5106 | 0.1685 | 104 | 0.5242 | | 0.497 | 0.1896 | 117 | 0.5265 | | 0.5026 | 0.2106 | 130 | 0.5169 | | 0.4923 | 0.2317 | 143 | 0.5151 | | 0.4736 | 0.2527 | 156 | 0.5093 | | 0.4763 | 0.2738 | 169 | 0.5057 | | 0.4842 | 0.2949 | 182 | 0.5039 | | 0.4821 | 0.3159 | 195 | 0.5020 | | 0.4845 | 0.3370 | 208 | 0.5017 | | 0.4639 | 0.3580 | 221 | 0.4959 | | 0.4695 | 0.3791 | 234 | 0.4931 | | 0.4603 | 0.4002 | 247 | 0.4872 | | 0.4706 | 0.4212 | 260 | 0.4854 | | 0.4797 | 0.4423 | 273 | 0.4825 | | 0.4674 | 0.4633 | 286 | 0.4796 | | 0.458 | 0.4844 | 299 | 0.4772 | | 0.4553 | 0.5055 | 312 | 0.4715 | | 0.4554 | 0.5265 | 325 | 0.4674 | | 0.455 | 0.5476 | 338 | 0.4639 | | 0.4522 | 0.5687 | 351 | 0.4622 | | 0.4412 | 0.5897 | 364 | 0.4576 | | 0.4401 | 0.6108 | 377 | 0.4574 | | 0.4341 | 0.6318 | 390 | 0.4545 | | 0.441 | 0.6529 | 403 | 0.4491 | | 0.4299 | 0.6740 | 416 | 0.4497 | | 0.4195 | 0.6950 | 429 | 0.4478 | | 0.4401 | 0.7161 | 442 | 0.4445 | | 0.4255 | 0.7371 | 455 | 0.4428 | | 0.4401 | 0.7582 | 468 | 0.4400 | | 0.4323 | 0.7793 | 481 | 0.4395 | | 0.4372 | 0.8003 | 494 | 0.4381 | | 0.4261 | 0.8214 | 507 | 0.4373 | | 0.4167 | 0.8424 | 520 | 0.4368 | | 0.4221 | 0.8635 | 533 | 0.4356 | | 0.4143 | 0.8846 | 546 | 0.4349 | | 0.4331 | 0.9056 | 559 | 0.4345 | | 0.4288 | 0.9267 | 572 | 0.4341 | | 0.4174 | 0.9478 | 585 | 0.4338 | | 0.4202 | 0.9688 | 598 | 0.4337 | | 0.4195 | 0.9899 | 611 | 0.4337 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1