--- license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Pashto results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs ps_af type: google/fleurs config: ps_af split: test args: ps_af metrics: - name: Wer type: wer value: 89.14951573849879 --- # Whisper Small Pashto This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs ps_af dataset. It achieves the following results on the evaluation set: - Loss: 1.3860 - Wer: 89.1495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9754 | 14.29 | 100 | 1.9261 | 240.8596 | | 1.5323 | 28.57 | 200 | 1.5718 | 168.5608 | | 1.338 | 42.86 | 300 | 1.4249 | 96.6480 | | 1.282 | 57.14 | 400 | 1.3860 | 89.1495 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2