--- license: apache-2.0 tags: - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: fleurs config: ps_af split: test args: ps_af metrics: - name: Wer type: wer value: 66.00332929782083 --- # openai/whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 1.0277 - Wer: 66.0033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.0871 | 14.29 | 100 | 2.0102 | 230.2739 | | 1.465 | 28.57 | 200 | 1.4969 | 137.2427 | | 1.1617 | 42.86 | 300 | 1.2716 | 76.3242 | | 1.0019 | 57.14 | 400 | 1.1645 | 71.3756 | | 0.9052 | 71.43 | 500 | 1.1051 | 69.7866 | | 0.8334 | 85.71 | 600 | 1.0691 | 68.2657 | | 0.7838 | 100.0 | 700 | 1.0483 | 67.1686 | | 0.7539 | 114.29 | 800 | 1.0363 | 66.4195 | | 0.7377 | 128.57 | 900 | 1.0297 | 66.2001 | | 0.7325 | 142.86 | 1000 | 1.0277 | 66.0033 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2