Update README.md
Browse files
README.md
CHANGED
@@ -9,8 +9,6 @@ tags:
|
|
9 |
|
10 |
# Aegolius Acadicus 24B V2
|
11 |
|
12 |
-
# Aegolius Acadicus 30B
|
13 |
-
|
14 |
![img](./aegolius-acadicus.png)
|
15 |
|
16 |
I like to call this model "The little professor". It is simply a MOE merge of lora merged models across Llama2 and Mistral. I am using this as a test case to move to larger models and get my gate discrimination set correctly. This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series".
|
@@ -48,8 +46,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
48 |
|
49 |
torch.set_default_device("cuda")
|
50 |
|
51 |
-
model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-
|
53 |
|
54 |
inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False)
|
55 |
|
|
|
9 |
|
10 |
# Aegolius Acadicus 24B V2
|
11 |
|
|
|
|
|
12 |
![img](./aegolius-acadicus.png)
|
13 |
|
14 |
I like to call this model "The little professor". It is simply a MOE merge of lora merged models across Llama2 and Mistral. I am using this as a test case to move to larger models and get my gate discrimination set correctly. This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series".
|
|
|
46 |
|
47 |
torch.set_default_device("cuda")
|
48 |
|
49 |
+
model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-24b-v2", torch_dtype="auto", device_config='auto')
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-24b-v2")
|
51 |
|
52 |
inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False)
|
53 |
|