iamhack commited on
Commit
16356f2
1 Parent(s): c6ea9d4

End of training

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: DH_o_m
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.999538394699685
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # DH_o_m
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.0032
36
+ - Accuracy: 0.9995
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - distributed_type: tpu
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 5
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.0258 | 1.0 | 287 | 0.0157 | 0.9988 |
72
+ | 0.0111 | 2.0 | 575 | 0.0062 | 0.9994 |
73
+ | 0.0067 | 3.0 | 863 | 0.0047 | 0.9995 |
74
+ | 0.0063 | 4.0 | 1151 | 0.0036 | 0.9995 |
75
+ | 0.0018 | 4.99 | 1435 | 0.0032 | 0.9995 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.37.2
81
+ - Pytorch 2.0.0+cu118
82
+ - Datasets 2.17.0
83
+ - Tokenizers 0.15.1