File size: 3,112 Bytes
5cc71e1
 
 
 
 
590588d
5cc71e1
 
 
590588d
 
5cc71e1
590588d
 
 
 
 
 
 
 
5cc71e1
 
 
 
 
 
 
590588d
5cc71e1
590588d
 
5cc71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590588d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: Langboat/mengzi-bert-base-fin
tags:
- generated_from_trainer
- finance
metrics:
- accuracy
model-index:
- name: >-
    mengzi-bert-base-fin-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1
  results: []
language:
- zh
widget:
  - text: >-
      惠誉下调美国3A主权信用评级次日,经济学家看轻评级下调影响,美国7月ADP新增就业超预期爆表。风险情绪被重创,标普、道指、小盘股齐跌约1%,纳指跌超2%创2月以来最差。
      美国超导跌近29%。美债发行海啸即将来袭,10年期美债收益率一度创九个月新高,两年期美债收益率跌幅显著收窄。美元转涨刷新三周半高位。
      商品普跌。油价跌超2%,美油跌穿80美元整数位。黄金失守1940美元至三周新低。
      中国市场方面,美股时段,中概股指跌4%,理想汽车则再创历史新高,离岸人民币一度跌穿7.21元,最深跌270点至一周低位。沪指收跌近1%,医药、银行疲软,超导概念、地产、券商强势。恒指收跌2.47%,南向资金净流入4.02亿港元。
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mengzi-bert-base-fin-finetuning-wallstreetcn-morning-news-market-overview-open-000001SH-v1

This model is a fine-tuned version of [Langboat/mengzi-bert-base-fin](https://huggingface.co/Langboat/mengzi-bert-base-fin) on the dataset of Wallstreetcn Morning News Market Overview with overnight index (000001.SH) movement labels.
It achieves the following results on the evaluation set:
- Loss: 0.7016905546188354
- Accuracy: 0.7586206896551724

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 38   | 0.6799          | 0.5517   |
| No log        | 2.0   | 76   | 0.6132          | 0.7241   |
| No log        | 3.0   | 114  | 0.6453          | 0.6207   |
| No log        | 4.0   | 152  | 0.7017          | 0.7586   |
| No log        | 5.0   | 190  | 0.9160          | 0.7241   |
| No log        | 6.0   | 228  | 1.0803          | 0.7586   |
| No log        | 7.0   | 266  | 1.1766          | 0.7241   |
| No log        | 8.0   | 304  | 1.1976          | 0.7586   |
| No log        | 9.0   | 342  | 1.2610          | 0.7241   |
| No log        | 10.0  | 380  | 1.2948          | 0.7241   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3