wbi-sg commited on
Commit
ba722a9
1 Parent(s): da1156b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - flair
4
+ - entity-mention-linker
5
+ ---
6
+
7
+ ## sapbert-ncbi-taxonomy-no-ab3p
8
+
9
+ Biomedical Entity Mention Linking for UMLS.
10
+ We use this model for species since NCBI Taxonomy is contained in UMLS:
11
+
12
+ - Model: [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext)
13
+ - Dictionary: [NCBI Taxonomy](https://www.ncbi.nlm.nih.gov/taxonomy) (See [FTP](https://ftp.ncbi.nih.gov/pub/taxonomy/new_taxdump/))
14
+
15
+ This model variant does not perform abbreviation resolution via [A3bP](https://github.com/ncbi-nlp/Ab3P)
16
+
17
+ ### Demo: How to use in Flair
18
+
19
+ Requires:
20
+
21
+ - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`)
22
+
23
+ ```python
24
+ from flair.data import Sentence
25
+ from flair.models import Classifier, EntityMentionLinker
26
+ from flair.tokenization import SciSpacyTokenizer
27
+
28
+ sentence = Sentence(
29
+ "The mutation in the ABCD1 gene causes X-linked adrenoleukodystrophy, "
30
+ "a neurodegenerative disease, which is exacerbated by exposure to high "
31
+ "levels of mercury in dolphin populations.",
32
+ use_tokenizer=SciSpacyTokenizer()
33
+ )
34
+
35
+ # load hunflair to detect the entity mentions we want to link.
36
+ tagger = Classifier.load("hunflair-species")
37
+ tagger.predict(sentence)
38
+
39
+ # load the linker and dictionary
40
+ linker = EntityMentionLinker.load("species-linker")
41
+ linker.predict(sentence)
42
+
43
+ # print the results for each entity mention:
44
+ for span in sentence.get_spans(tagger.label_type):
45
+ for link in span.get_labels(linker.label_type):
46
+ print(f"{span.text} -> {link.value}")
47
+ ```
48
+
49
+ As an alternative to downloading the already precomputed model (much storage). You can also build the model
50
+ and compute the embeddings for the dataset using:
51
+
52
+ ```python
53
+ linker = EntityMentionLinker.build("cambridgeltl/SapBERT-from-PubMedBERT-fulltext", dictionary_name_or_path="ncbi-taxonomy", entity_type="species", hybrid_search=False)
54
+ ```
55
+
56
+ This will reduce the download requirements, at the cost of computation. Note `hybrid_search=False` as SapBERT unlike BioSyn is trained only for dense retrieval.