File size: 11,446 Bytes
90f621f 47f5952 90f621f 8165860 496c970 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
license: mit
datasets:
- hotchpotch/JQaRA
- shunk031/JGLUE
- miracl/miracl
- castorini/mr-tydi
- unicamp-dl/mmarco
language:
- ja
library_name: sentence-transformers
---
## hotchpotch/japanese-bge-reranker-v2-m3-v1
日本語で学習させた Reranker (CrossEncoder) シリーズです。
| モデル名 | layers | hidden_size |
| ----------------------------------------------------------------------------------------------------------------------------------- | ------ | ----------- |
| [hotchpotch/japanese-reranker-cross-encoder-xsmall-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-xsmall-v1) | 6 | 384 |
| [hotchpotch/japanese-reranker-cross-encoder-small-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-small-v1) | 12 | 384 |
| [hotchpotch/japanese-reranker-cross-encoder-base-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-base-v1) | 12 | 768 |
| [hotchpotch/japanese-reranker-cross-encoder-large-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-large-v1) | 24 | 1024 |
| [hotchpotch/japanese-bge-reranker-v2-m3-v1](https://huggingface.co/hotchpotch/japanese-bge-reranker-v2-m3-v1) | 24 | 1024 |
Reranker についてや、技術レポート・評価等は以下を参考ください。
- [日本語最高性能のRerankerをリリース / そもそも Reranker とは?](https://secon.dev/entry/2024/04/02/070000-japanese-reranker-release/)
- [日本語 Reranker 作成のテクニカルレポート](https://secon.dev/entry/2024/04/02/080000-japanese-reranker-tech-report/)
## 使い方
### SentenceTransformers
```python
from sentence_transformers import CrossEncoder
import torch
MODEL_NAME = "hotchpotch/japanese-bge-reranker-v2-m3-v1"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = CrossEncoder(MODEL_NAME, max_length=512, device=device)
if device == "cuda":
model.model.half()
query = "感動的な映画について"
passages = [
"深いテーマを持ちながらも、観る人の心を揺さぶる名作。登場人物の心情描写が秀逸で、ラストは涙なしでは見られない。",
"重要なメッセージ性は評価できるが、暗い話が続くので気分が落ち込んでしまった。もう少し明るい要素があればよかった。",
"どうにもリアリティに欠ける展開が気になった。もっと深みのある人間ドラマが見たかった。",
"アクションシーンが楽しすぎる。見ていて飽きない。ストーリーはシンプルだが、それが逆に良い。",
]
scores = model.predict([(query, passage) for passage in passages])
```
## HuggingFace transformers
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.nn import Sigmoid
MODEL_NAME = "hotchpotch/japanese-bge-reranker-v2-m3-v1"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.to(device)
model.eval()
if device == "cuda":
model.half()
query = "感動的な映画について"
passages = [
"深いテーマを持ちながらも、観る人の心を揺さぶる名作。登場人物の心情描写が秀逸で、ラストは涙なしでは見られない。",
"重要なメッセージ性は評価できるが、暗い話が続くので気分が落ち込んでしまった。もう少し明るい要素があればよかった。",
"どうにもリアリティに欠ける展開が気になった。もっと深みのある人間ドラマが見たかった。",
"アクションシーンが楽しすぎる。見ていて飽きない。ストーリーはシンプルだが、それが逆に良い。",
]
inputs = tokenizer(
[(query, passage) for passage in passages],
padding=True,
truncation=True,
max_length=512,
return_tensors="pt",
)
inputs = {k: v.to(device) for k, v in inputs.items()}
logits = model(**inputs).logits
activation = Sigmoid()
scores = activation(logits).squeeze().tolist()
```
## 評価結果
| Model Name | [JQaRA](https://huggingface.co/datasets/hotchpotch/JQaRA) | [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR) | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | [JSQuAD](https://github.com/yahoojapan/JGLUE) |
| ------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------------------------------- | ------------------------------------------------------- | --------------------------------------------- |
| [japanese-reranker-cross-encoder-xsmall-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-xsmall-v1) | 0.6136 | 0.9376 | 0.7411 | 0.9602 |
| [japanese-reranker-cross-encoder-small-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-small-v1) | 0.6247 | 0.939 | 0.7776 | 0.9604 |
| [japanese-reranker-cross-encoder-base-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-base-v1) | 0.6711 | 0.9337 | 0.818 | 0.9708 |
| [japanese-reranker-cross-encoder-large-v1](https://huggingface.co/hotchpotch/japanese-reranker-cross-encoder-large-v1) | 0.7099 | 0.9364 | 0.8406 | 0.9773 |
| [japanese-bge-reranker-v2-m3-v1](https://huggingface.co/hotchpotch/japanese-bge-reranker-v2-m3-v1) | 0.6918 | 0.9372 | 0.8423 | 0.9624 |
| [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | 0.673 | 0.9343 | 0.8374 | 0.9599 |
| [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 0.4718 | 0.7332 | 0.7666 | 0.7081 |
| [bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 0.2445 | 0.4905 | 0.6792 | 0.5757 |
| [cross-encoder-mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/corrius/cross-encoder-mmarco-mMiniLMv2-L12-H384-v1) | 0.5588 | 0.9211 | 0.7158 | 0.932 |
| [shioriha-large-reranker](https://huggingface.co/cl-nagoya/shioriha-large-reranker) | 0.5775 | 0.8458 | 0.8084 | 0.9262 |
| [bge-m3+all](https://huggingface.co/BAAI/bge-m3) | 0.576 | 0.904 | 0.7926 | 0.9226 |
| [bge-m3+dense](https://huggingface.co/BAAI/bge-m3) | 0.539 | 0.8642 | 0.7753 | 0.8815 |
| [bge-m3+colbert](https://huggingface.co/BAAI/bge-m3) | 0.5656 | 0.9064 | 0.7902 | 0.9297 |
| [bge-m3+sparse](https://huggingface.co/BAAI/bge-m3) | 0.5088 | 0.8944 | 0.6941 | 0.9184 |
| [JaColBERTv2](https://huggingface.co/bclavie/JaColBERTv2) | 0.5847 | 0.9185 | 0.6861 | 0.9247 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.554 | 0.8759 | 0.7722 | 0.8892 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 0.4917 | 0.869 | 0.7025 | 0.8565 |
| bm25 | 0.458 | 0.8408 | 0.4387 | 0.9002 |
## ライセンス
MIT License |