File size: 177,768 Bytes
427ee7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac3d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
{"current_steps": 1, "total_steps": 658, "loss": 21.3162, "learning_rate": 5.000000000000001e-07, "epoch": 0.0015188912094171254, "percentage": 0.15, "elapsed_time": "0:02:35", "remaining_time": "1 day, 4:28:04"}
{"current_steps": 2, "total_steps": 658, "loss": 19.5214, "learning_rate": 1.0000000000000002e-06, "epoch": 0.003037782418834251, "percentage": 0.3, "elapsed_time": "0:05:13", "remaining_time": "1 day, 4:31:41"}
{"current_steps": 3, "total_steps": 658, "loss": 20.3955, "learning_rate": 1.5e-06, "epoch": 0.004556673628251376, "percentage": 0.46, "elapsed_time": "0:07:50", "remaining_time": "1 day, 4:31:11"}
{"current_steps": 4, "total_steps": 658, "loss": 19.8595, "learning_rate": 2.0000000000000003e-06, "epoch": 0.006075564837668502, "percentage": 0.61, "elapsed_time": "0:10:27", "remaining_time": "1 day, 4:29:34"}
{"current_steps": 5, "total_steps": 658, "loss": 19.3269, "learning_rate": 2.5e-06, "epoch": 0.007594456047085627, "percentage": 0.76, "elapsed_time": "0:13:04", "remaining_time": "1 day, 4:27:36"}
{"current_steps": 6, "total_steps": 658, "loss": 20.3605, "learning_rate": 3e-06, "epoch": 0.009113347256502752, "percentage": 0.91, "elapsed_time": "0:15:41", "remaining_time": "1 day, 4:25:00"}
{"current_steps": 7, "total_steps": 658, "loss": 18.9548, "learning_rate": 3.5e-06, "epoch": 0.010632238465919878, "percentage": 1.06, "elapsed_time": "0:18:18", "remaining_time": "1 day, 4:22:16"}
{"current_steps": 8, "total_steps": 658, "loss": 17.6873, "learning_rate": 4.000000000000001e-06, "epoch": 0.012151129675337003, "percentage": 1.22, "elapsed_time": "0:20:54", "remaining_time": "1 day, 4:19:27"}
{"current_steps": 9, "total_steps": 658, "loss": 17.031, "learning_rate": 4.5e-06, "epoch": 0.013670020884754129, "percentage": 1.37, "elapsed_time": "0:23:31", "remaining_time": "1 day, 4:16:36"}
{"current_steps": 10, "total_steps": 658, "loss": 15.499, "learning_rate": 5e-06, "epoch": 0.015188912094171255, "percentage": 1.52, "elapsed_time": "0:26:08", "remaining_time": "1 day, 4:13:56"}
{"current_steps": 11, "total_steps": 658, "loss": 13.135, "learning_rate": 5.500000000000001e-06, "epoch": 0.01670780330358838, "percentage": 1.67, "elapsed_time": "0:28:45", "remaining_time": "1 day, 4:11:19"}
{"current_steps": 12, "total_steps": 658, "loss": 12.58, "learning_rate": 6e-06, "epoch": 0.018226694513005504, "percentage": 1.82, "elapsed_time": "0:31:22", "remaining_time": "1 day, 4:08:35"}
{"current_steps": 13, "total_steps": 658, "loss": 10.6039, "learning_rate": 6.5000000000000004e-06, "epoch": 0.01974558572242263, "percentage": 1.98, "elapsed_time": "0:33:58", "remaining_time": "1 day, 4:05:51"}
{"current_steps": 14, "total_steps": 658, "loss": 9.4173, "learning_rate": 7e-06, "epoch": 0.021264476931839756, "percentage": 2.13, "elapsed_time": "0:36:35", "remaining_time": "1 day, 4:03:15"}
{"current_steps": 15, "total_steps": 658, "loss": 8.5445, "learning_rate": 7.500000000000001e-06, "epoch": 0.022783368141256883, "percentage": 2.28, "elapsed_time": "0:39:12", "remaining_time": "1 day, 4:00:36"}
{"current_steps": 16, "total_steps": 658, "loss": 8.3828, "learning_rate": 8.000000000000001e-06, "epoch": 0.024302259350674007, "percentage": 2.43, "elapsed_time": "0:41:49", "remaining_time": "1 day, 3:57:59"}
{"current_steps": 17, "total_steps": 658, "loss": 7.3555, "learning_rate": 8.5e-06, "epoch": 0.025821150560091134, "percentage": 2.58, "elapsed_time": "0:44:26", "remaining_time": "1 day, 3:55:26"}
{"current_steps": 18, "total_steps": 658, "loss": 6.5261, "learning_rate": 9e-06, "epoch": 0.027340041769508258, "percentage": 2.74, "elapsed_time": "0:47:03", "remaining_time": "1 day, 3:52:56"}
{"current_steps": 19, "total_steps": 658, "loss": 6.4529, "learning_rate": 9.5e-06, "epoch": 0.028858932978925386, "percentage": 2.89, "elapsed_time": "0:49:39", "remaining_time": "1 day, 3:50:21"}
{"current_steps": 20, "total_steps": 658, "loss": 6.1533, "learning_rate": 1e-05, "epoch": 0.03037782418834251, "percentage": 3.04, "elapsed_time": "0:52:16", "remaining_time": "1 day, 3:47:47"}
{"current_steps": 21, "total_steps": 658, "loss": 5.6474, "learning_rate": 9.999939382570075e-06, "epoch": 0.03189671539775964, "percentage": 3.19, "elapsed_time": "0:54:53", "remaining_time": "1 day, 3:45:11"}
{"current_steps": 22, "total_steps": 658, "loss": 5.379, "learning_rate": 9.999757531750086e-06, "epoch": 0.03341560660717676, "percentage": 3.34, "elapsed_time": "0:57:30", "remaining_time": "1 day, 3:42:36"}
{"current_steps": 23, "total_steps": 658, "loss": 5.1134, "learning_rate": 9.999454451949364e-06, "epoch": 0.034934497816593885, "percentage": 3.5, "elapsed_time": "1:00:07", "remaining_time": "1 day, 3:40:01"}
{"current_steps": 24, "total_steps": 658, "loss": 4.8157, "learning_rate": 9.999030150516681e-06, "epoch": 0.03645338902601101, "percentage": 3.65, "elapsed_time": "1:02:44", "remaining_time": "1 day, 3:37:26"}
{"current_steps": 25, "total_steps": 658, "loss": 4.7658, "learning_rate": 9.998484637740058e-06, "epoch": 0.03797228023542814, "percentage": 3.8, "elapsed_time": "1:05:21", "remaining_time": "1 day, 3:34:51"}
{"current_steps": 26, "total_steps": 658, "loss": 4.6094, "learning_rate": 9.997817926846528e-06, "epoch": 0.03949117144484526, "percentage": 3.95, "elapsed_time": "1:07:58", "remaining_time": "1 day, 3:32:18"}
{"current_steps": 27, "total_steps": 658, "loss": 4.389, "learning_rate": 9.997030034001815e-06, "epoch": 0.04101006265426239, "percentage": 4.1, "elapsed_time": "1:10:35", "remaining_time": "1 day, 3:29:45"}
{"current_steps": 28, "total_steps": 658, "loss": 4.3941, "learning_rate": 9.99612097830993e-06, "epoch": 0.04252895386367951, "percentage": 4.26, "elapsed_time": "1:13:12", "remaining_time": "1 day, 3:27:15"}
{"current_steps": 29, "total_steps": 658, "loss": 4.3693, "learning_rate": 9.995090781812724e-06, "epoch": 0.04404784507309664, "percentage": 4.41, "elapsed_time": "1:15:49", "remaining_time": "1 day, 3:24:45"}
{"current_steps": 30, "total_steps": 658, "loss": 4.2591, "learning_rate": 9.993939469489342e-06, "epoch": 0.045566736282513766, "percentage": 4.56, "elapsed_time": "1:18:27", "remaining_time": "1 day, 3:22:15"}
{"current_steps": 31, "total_steps": 658, "loss": 4.2106, "learning_rate": 9.99266706925562e-06, "epoch": 0.04708562749193089, "percentage": 4.71, "elapsed_time": "1:21:04", "remaining_time": "1 day, 3:19:44"}
{"current_steps": 32, "total_steps": 658, "loss": 4.131, "learning_rate": 9.991273611963413e-06, "epoch": 0.048604518701348014, "percentage": 4.86, "elapsed_time": "1:23:41", "remaining_time": "1 day, 3:17:15"}
{"current_steps": 33, "total_steps": 658, "loss": 4.0936, "learning_rate": 9.98975913139984e-06, "epoch": 0.050123409910765145, "percentage": 5.02, "elapsed_time": "1:26:19", "remaining_time": "1 day, 3:14:49"}
{"current_steps": 34, "total_steps": 658, "loss": 4.0474, "learning_rate": 9.98812366428647e-06, "epoch": 0.05164230112018227, "percentage": 5.17, "elapsed_time": "1:28:56", "remaining_time": "1 day, 3:12:21"}
{"current_steps": 35, "total_steps": 658, "loss": 4.0911, "learning_rate": 9.986367250278423e-06, "epoch": 0.05316119232959939, "percentage": 5.32, "elapsed_time": "1:31:33", "remaining_time": "1 day, 3:09:50"}
{"current_steps": 36, "total_steps": 658, "loss": 3.8623, "learning_rate": 9.984489931963429e-06, "epoch": 0.054680083539016516, "percentage": 5.47, "elapsed_time": "1:34:11", "remaining_time": "1 day, 3:07:21"}
{"current_steps": 37, "total_steps": 658, "loss": 3.7118, "learning_rate": 9.982491754860763e-06, "epoch": 0.05619897474843364, "percentage": 5.62, "elapsed_time": "1:36:48", "remaining_time": "1 day, 3:04:50"}
{"current_steps": 38, "total_steps": 658, "loss": 3.9689, "learning_rate": 9.980372767420179e-06, "epoch": 0.05771786595785077, "percentage": 5.78, "elapsed_time": "1:39:25", "remaining_time": "1 day, 3:02:18"}
{"current_steps": 39, "total_steps": 658, "loss": 3.782, "learning_rate": 9.978133021020697e-06, "epoch": 0.059236757167267895, "percentage": 5.93, "elapsed_time": "1:42:03", "remaining_time": "1 day, 2:59:46"}
{"current_steps": 40, "total_steps": 658, "loss": 3.7709, "learning_rate": 9.97577256996939e-06, "epoch": 0.06075564837668502, "percentage": 6.08, "elapsed_time": "1:44:40", "remaining_time": "1 day, 2:57:14"}
{"current_steps": 41, "total_steps": 658, "loss": 3.6426, "learning_rate": 9.97329147150005e-06, "epoch": 0.06227453958610214, "percentage": 6.23, "elapsed_time": "1:47:17", "remaining_time": "1 day, 2:54:41"}
{"current_steps": 42, "total_steps": 658, "loss": 3.5875, "learning_rate": 9.970689785771798e-06, "epoch": 0.06379343079551927, "percentage": 6.38, "elapsed_time": "1:49:55", "remaining_time": "1 day, 2:52:08"}
{"current_steps": 43, "total_steps": 658, "loss": 3.7528, "learning_rate": 9.96796757586764e-06, "epoch": 0.06531232200493639, "percentage": 6.53, "elapsed_time": "1:52:32", "remaining_time": "1 day, 2:49:35"}
{"current_steps": 44, "total_steps": 658, "loss": 3.5526, "learning_rate": 9.965124907792916e-06, "epoch": 0.06683121321435352, "percentage": 6.69, "elapsed_time": "1:55:09", "remaining_time": "1 day, 2:47:04"}
{"current_steps": 45, "total_steps": 658, "loss": 3.4634, "learning_rate": 9.962161850473723e-06, "epoch": 0.06835010442377065, "percentage": 6.84, "elapsed_time": "1:57:47", "remaining_time": "1 day, 2:44:31"}
{"current_steps": 46, "total_steps": 658, "loss": 3.534, "learning_rate": 9.95907847575523e-06, "epoch": 0.06986899563318777, "percentage": 6.99, "elapsed_time": "2:00:24", "remaining_time": "1 day, 2:41:58"}
{"current_steps": 47, "total_steps": 658, "loss": 3.4982, "learning_rate": 9.955874858399936e-06, "epoch": 0.0713878868426049, "percentage": 7.14, "elapsed_time": "2:03:02", "remaining_time": "1 day, 2:39:26"}
{"current_steps": 48, "total_steps": 658, "loss": 3.5063, "learning_rate": 9.952551076085864e-06, "epoch": 0.07290677805202202, "percentage": 7.29, "elapsed_time": "2:05:39", "remaining_time": "1 day, 2:36:54"}
{"current_steps": 49, "total_steps": 658, "loss": 3.4372, "learning_rate": 9.949107209404664e-06, "epoch": 0.07442566926143915, "percentage": 7.45, "elapsed_time": "2:08:16", "remaining_time": "1 day, 2:34:21"}
{"current_steps": 50, "total_steps": 658, "loss": 3.4007, "learning_rate": 9.945543341859681e-06, "epoch": 0.07594456047085628, "percentage": 7.6, "elapsed_time": "2:10:54", "remaining_time": "1 day, 2:31:49"}
{"current_steps": 51, "total_steps": 658, "loss": 3.2577, "learning_rate": 9.94185955986391e-06, "epoch": 0.0774634516802734, "percentage": 7.75, "elapsed_time": "2:13:31", "remaining_time": "1 day, 2:29:16"}
{"current_steps": 52, "total_steps": 658, "loss": 3.2997, "learning_rate": 9.938055952737908e-06, "epoch": 0.07898234288969053, "percentage": 7.9, "elapsed_time": "2:16:09", "remaining_time": "1 day, 2:26:41"}
{"current_steps": 53, "total_steps": 658, "loss": 3.3514, "learning_rate": 9.934132612707631e-06, "epoch": 0.08050123409910766, "percentage": 8.05, "elapsed_time": "2:18:46", "remaining_time": "1 day, 2:24:05"}
{"current_steps": 54, "total_steps": 658, "loss": 3.1966, "learning_rate": 9.930089634902197e-06, "epoch": 0.08202012530852477, "percentage": 8.21, "elapsed_time": "2:21:23", "remaining_time": "1 day, 2:21:29"}
{"current_steps": 55, "total_steps": 658, "loss": 3.1777, "learning_rate": 9.925927117351573e-06, "epoch": 0.0835390165179419, "percentage": 8.36, "elapsed_time": "2:24:00", "remaining_time": "1 day, 2:18:52"}
{"current_steps": 56, "total_steps": 658, "loss": 3.0858, "learning_rate": 9.921645160984205e-06, "epoch": 0.08505790772735902, "percentage": 8.51, "elapsed_time": "2:26:37", "remaining_time": "1 day, 2:16:15"}
{"current_steps": 57, "total_steps": 658, "loss": 3.1884, "learning_rate": 9.917243869624573e-06, "epoch": 0.08657679893677615, "percentage": 8.66, "elapsed_time": "2:29:14", "remaining_time": "1 day, 2:13:39"}
{"current_steps": 58, "total_steps": 658, "loss": 3.1061, "learning_rate": 9.91272334999066e-06, "epoch": 0.08809569014619328, "percentage": 8.81, "elapsed_time": "2:31:52", "remaining_time": "1 day, 2:11:02"}
{"current_steps": 59, "total_steps": 658, "loss": 3.1701, "learning_rate": 9.908083711691383e-06, "epoch": 0.0896145813556104, "percentage": 8.97, "elapsed_time": "2:34:29", "remaining_time": "1 day, 2:08:25"}
{"current_steps": 60, "total_steps": 658, "loss": 3.1281, "learning_rate": 9.903325067223918e-06, "epoch": 0.09113347256502753, "percentage": 9.12, "elapsed_time": "2:37:06", "remaining_time": "1 day, 2:05:47"}
{"current_steps": 61, "total_steps": 658, "loss": 3.0717, "learning_rate": 9.898447531970989e-06, "epoch": 0.09265236377444465, "percentage": 9.27, "elapsed_time": "2:39:43", "remaining_time": "1 day, 2:03:10"}
{"current_steps": 62, "total_steps": 658, "loss": 3.0151, "learning_rate": 9.893451224198051e-06, "epoch": 0.09417125498386178, "percentage": 9.42, "elapsed_time": "2:42:20", "remaining_time": "1 day, 2:00:33"}
{"current_steps": 63, "total_steps": 658, "loss": 3.0585, "learning_rate": 9.888336265050443e-06, "epoch": 0.09569014619327891, "percentage": 9.57, "elapsed_time": "2:44:57", "remaining_time": "1 day, 1:57:55"}
{"current_steps": 64, "total_steps": 658, "loss": 3.0649, "learning_rate": 9.883102778550434e-06, "epoch": 0.09720903740269603, "percentage": 9.73, "elapsed_time": "2:47:34", "remaining_time": "1 day, 1:55:18"}
{"current_steps": 65, "total_steps": 658, "loss": 3.0054, "learning_rate": 9.877750891594224e-06, "epoch": 0.09872792861211316, "percentage": 9.88, "elapsed_time": "2:50:11", "remaining_time": "1 day, 1:52:40"}
{"current_steps": 66, "total_steps": 658, "loss": 2.911, "learning_rate": 9.872280733948867e-06, "epoch": 0.10024681982153029, "percentage": 10.03, "elapsed_time": "2:52:48", "remaining_time": "1 day, 1:50:02"}
{"current_steps": 67, "total_steps": 658, "loss": 3.0651, "learning_rate": 9.866692438249124e-06, "epoch": 0.1017657110309474, "percentage": 10.18, "elapsed_time": "2:55:25", "remaining_time": "1 day, 1:47:25"}
{"current_steps": 68, "total_steps": 658, "loss": 2.9609, "learning_rate": 9.86098613999424e-06, "epoch": 0.10328460224036454, "percentage": 10.33, "elapsed_time": "2:58:02", "remaining_time": "1 day, 1:44:48"}
{"current_steps": 69, "total_steps": 658, "loss": 3.0308, "learning_rate": 9.855161977544672e-06, "epoch": 0.10480349344978165, "percentage": 10.49, "elapsed_time": "3:00:39", "remaining_time": "1 day, 1:42:11"}
{"current_steps": 70, "total_steps": 658, "loss": 2.97, "learning_rate": 9.849220092118721e-06, "epoch": 0.10632238465919878, "percentage": 10.64, "elapsed_time": "3:03:16", "remaining_time": "1 day, 1:39:32"}
{"current_steps": 71, "total_steps": 658, "loss": 2.9543, "learning_rate": 9.84316062778912e-06, "epoch": 0.10784127586861592, "percentage": 10.79, "elapsed_time": "3:05:53", "remaining_time": "1 day, 1:36:52"}
{"current_steps": 72, "total_steps": 658, "loss": 2.8797, "learning_rate": 9.836983731479526e-06, "epoch": 0.10936016707803303, "percentage": 10.94, "elapsed_time": "3:08:30", "remaining_time": "1 day, 1:34:13"}
{"current_steps": 73, "total_steps": 658, "loss": 2.8188, "learning_rate": 9.830689552960974e-06, "epoch": 0.11087905828745016, "percentage": 11.09, "elapsed_time": "3:11:07", "remaining_time": "1 day, 1:31:36"}
{"current_steps": 74, "total_steps": 658, "loss": 2.9654, "learning_rate": 9.824278244848236e-06, "epoch": 0.11239794949686728, "percentage": 11.25, "elapsed_time": "3:13:44", "remaining_time": "1 day, 1:28:59"}
{"current_steps": 75, "total_steps": 658, "loss": 2.8417, "learning_rate": 9.817749962596115e-06, "epoch": 0.11391684070628441, "percentage": 11.4, "elapsed_time": "3:16:21", "remaining_time": "1 day, 1:26:22"}
{"current_steps": 76, "total_steps": 658, "loss": 2.9101, "learning_rate": 9.811104864495691e-06, "epoch": 0.11543573191570154, "percentage": 11.55, "elapsed_time": "3:18:58", "remaining_time": "1 day, 1:23:46"}
{"current_steps": 77, "total_steps": 658, "loss": 2.8579, "learning_rate": 9.804343111670472e-06, "epoch": 0.11695462312511866, "percentage": 11.7, "elapsed_time": "3:21:36", "remaining_time": "1 day, 1:21:09"}
{"current_steps": 78, "total_steps": 658, "loss": 2.8388, "learning_rate": 9.797464868072489e-06, "epoch": 0.11847351433453579, "percentage": 11.85, "elapsed_time": "3:24:13", "remaining_time": "1 day, 1:18:33"}
{"current_steps": 79, "total_steps": 658, "loss": 2.8716, "learning_rate": 9.790470300478318e-06, "epoch": 0.11999240554395292, "percentage": 12.01, "elapsed_time": "3:26:50", "remaining_time": "1 day, 1:15:57"}
{"current_steps": 80, "total_steps": 658, "loss": 2.8199, "learning_rate": 9.783359578485047e-06, "epoch": 0.12151129675337004, "percentage": 12.16, "elapsed_time": "3:29:27", "remaining_time": "1 day, 1:13:21"}
{"current_steps": 81, "total_steps": 658, "loss": 2.8302, "learning_rate": 9.776132874506153e-06, "epoch": 0.12303018796278717, "percentage": 12.31, "elapsed_time": "3:32:04", "remaining_time": "1 day, 1:10:44"}
{"current_steps": 82, "total_steps": 658, "loss": 2.795, "learning_rate": 9.768790363767321e-06, "epoch": 0.12454907917220429, "percentage": 12.46, "elapsed_time": "3:34:42", "remaining_time": "1 day, 1:08:08"}
{"current_steps": 83, "total_steps": 658, "loss": 2.7479, "learning_rate": 9.761332224302209e-06, "epoch": 0.1260679703816214, "percentage": 12.61, "elapsed_time": "3:37:19", "remaining_time": "1 day, 1:05:31"}
{"current_steps": 84, "total_steps": 658, "loss": 2.7841, "learning_rate": 9.753758636948112e-06, "epoch": 0.12758686159103855, "percentage": 12.77, "elapsed_time": "3:39:56", "remaining_time": "1 day, 1:02:55"}
{"current_steps": 85, "total_steps": 658, "loss": 2.8815, "learning_rate": 9.74606978534159e-06, "epoch": 0.12910575280045566, "percentage": 12.92, "elapsed_time": "3:42:33", "remaining_time": "1 day, 1:00:18"}
{"current_steps": 86, "total_steps": 658, "loss": 2.7458, "learning_rate": 9.738265855914014e-06, "epoch": 0.13062464400987278, "percentage": 13.07, "elapsed_time": "3:45:10", "remaining_time": "1 day, 0:57:42"}
{"current_steps": 87, "total_steps": 658, "loss": 2.8145, "learning_rate": 9.730347037887041e-06, "epoch": 0.13214353521928993, "percentage": 13.22, "elapsed_time": "3:47:47", "remaining_time": "1 day, 0:55:05"}
{"current_steps": 88, "total_steps": 658, "loss": 2.7804, "learning_rate": 9.722313523268028e-06, "epoch": 0.13366242642870704, "percentage": 13.37, "elapsed_time": "3:50:24", "remaining_time": "1 day, 0:52:28"}
{"current_steps": 89, "total_steps": 658, "loss": 2.7899, "learning_rate": 9.714165506845381e-06, "epoch": 0.13518131763812416, "percentage": 13.53, "elapsed_time": "3:53:02", "remaining_time": "1 day, 0:49:51"}
{"current_steps": 90, "total_steps": 658, "loss": 2.7296, "learning_rate": 9.705903186183828e-06, "epoch": 0.1367002088475413, "percentage": 13.68, "elapsed_time": "3:55:39", "remaining_time": "1 day, 0:47:13"}
{"current_steps": 91, "total_steps": 658, "loss": 2.7233, "learning_rate": 9.697526761619621e-06, "epoch": 0.13821910005695842, "percentage": 13.83, "elapsed_time": "3:58:16", "remaining_time": "1 day, 0:44:36"}
{"current_steps": 92, "total_steps": 658, "loss": 2.7421, "learning_rate": 9.689036436255698e-06, "epoch": 0.13973799126637554, "percentage": 13.98, "elapsed_time": "4:00:53", "remaining_time": "1 day, 0:41:59"}
{"current_steps": 93, "total_steps": 658, "loss": 2.7627, "learning_rate": 9.680432415956736e-06, "epoch": 0.14125688247579268, "percentage": 14.13, "elapsed_time": "4:03:30", "remaining_time": "1 day, 0:39:22"}
{"current_steps": 94, "total_steps": 658, "loss": 2.7611, "learning_rate": 9.671714909344175e-06, "epoch": 0.1427757736852098, "percentage": 14.29, "elapsed_time": "4:06:07", "remaining_time": "1 day, 0:36:45"}
{"current_steps": 95, "total_steps": 658, "loss": 2.753, "learning_rate": 9.66288412779115e-06, "epoch": 0.14429466489462692, "percentage": 14.44, "elapsed_time": "4:08:44", "remaining_time": "1 day, 0:34:08"}
{"current_steps": 96, "total_steps": 658, "loss": 2.7191, "learning_rate": 9.653940285417381e-06, "epoch": 0.14581355610404403, "percentage": 14.59, "elapsed_time": "4:11:21", "remaining_time": "1 day, 0:31:31"}
{"current_steps": 97, "total_steps": 658, "loss": 2.7194, "learning_rate": 9.644883599083959e-06, "epoch": 0.14733244731346118, "percentage": 14.74, "elapsed_time": "4:13:58", "remaining_time": "1 day, 0:28:54"}
{"current_steps": 98, "total_steps": 658, "loss": 2.6886, "learning_rate": 9.635714288388103e-06, "epoch": 0.1488513385228783, "percentage": 14.89, "elapsed_time": "4:16:36", "remaining_time": "1 day, 0:26:17"}
{"current_steps": 99, "total_steps": 658, "loss": 2.7631, "learning_rate": 9.626432575657834e-06, "epoch": 0.1503702297322954, "percentage": 15.05, "elapsed_time": "4:19:13", "remaining_time": "1 day, 0:23:40"}
{"current_steps": 100, "total_steps": 658, "loss": 2.6749, "learning_rate": 9.617038685946578e-06, "epoch": 0.15188912094171256, "percentage": 15.2, "elapsed_time": "4:21:50", "remaining_time": "1 day, 0:21:03"}
{"current_steps": 101, "total_steps": 658, "loss": 2.6299, "learning_rate": 9.60753284702772e-06, "epoch": 0.15340801215112967, "percentage": 15.35, "elapsed_time": "4:24:27", "remaining_time": "1 day, 0:18:26"}
{"current_steps": 102, "total_steps": 658, "loss": 2.6723, "learning_rate": 9.597915289389067e-06, "epoch": 0.1549269033605468, "percentage": 15.5, "elapsed_time": "4:27:04", "remaining_time": "1 day, 0:15:49"}
{"current_steps": 103, "total_steps": 658, "loss": 2.7104, "learning_rate": 9.58818624622727e-06, "epoch": 0.15644579456996394, "percentage": 15.65, "elapsed_time": "4:29:41", "remaining_time": "1 day, 0:13:11"}
{"current_steps": 104, "total_steps": 658, "loss": 2.6862, "learning_rate": 9.578345953442163e-06, "epoch": 0.15796468577938105, "percentage": 15.81, "elapsed_time": "4:32:18", "remaining_time": "1 day, 0:10:34"}
{"current_steps": 105, "total_steps": 658, "loss": 2.7183, "learning_rate": 9.568394649631055e-06, "epoch": 0.15948357698879817, "percentage": 15.96, "elapsed_time": "4:34:55", "remaining_time": "1 day, 0:07:56"}
{"current_steps": 106, "total_steps": 658, "loss": 2.6991, "learning_rate": 9.558332576082925e-06, "epoch": 0.16100246819821531, "percentage": 16.11, "elapsed_time": "4:37:32", "remaining_time": "1 day, 0:05:18"}
{"current_steps": 107, "total_steps": 658, "loss": 2.591, "learning_rate": 9.548159976772593e-06, "epoch": 0.16252135940763243, "percentage": 16.26, "elapsed_time": "4:40:09", "remaining_time": "1 day, 0:02:41"}
{"current_steps": 108, "total_steps": 658, "loss": 2.6819, "learning_rate": 9.537877098354787e-06, "epoch": 0.16404025061704955, "percentage": 16.41, "elapsed_time": "4:42:46", "remaining_time": "1 day, 0:00:04"}
{"current_steps": 109, "total_steps": 658, "loss": 2.6957, "learning_rate": 9.527484190158171e-06, "epoch": 0.16555914182646667, "percentage": 16.57, "elapsed_time": "4:45:23", "remaining_time": "23:57:27"}
{"current_steps": 110, "total_steps": 658, "loss": 2.7064, "learning_rate": 9.5169815041793e-06, "epoch": 0.1670780330358838, "percentage": 16.72, "elapsed_time": "4:48:01", "remaining_time": "23:54:51"}
{"current_steps": 111, "total_steps": 658, "loss": 2.6742, "learning_rate": 9.506369295076505e-06, "epoch": 0.16859692424530093, "percentage": 16.87, "elapsed_time": "4:50:38", "remaining_time": "23:52:14"}
{"current_steps": 112, "total_steps": 658, "loss": 2.6757, "learning_rate": 9.495647820163725e-06, "epoch": 0.17011581545471804, "percentage": 17.02, "elapsed_time": "4:53:15", "remaining_time": "23:49:38"}
{"current_steps": 113, "total_steps": 658, "loss": 2.6503, "learning_rate": 9.484817339404261e-06, "epoch": 0.1716347066641352, "percentage": 17.17, "elapsed_time": "4:55:52", "remaining_time": "23:47:02"}
{"current_steps": 114, "total_steps": 658, "loss": 2.6608, "learning_rate": 9.473878115404477e-06, "epoch": 0.1731535978735523, "percentage": 17.33, "elapsed_time": "4:58:30", "remaining_time": "23:44:25"}
{"current_steps": 115, "total_steps": 658, "loss": 2.6217, "learning_rate": 9.462830413407427e-06, "epoch": 0.17467248908296942, "percentage": 17.48, "elapsed_time": "5:01:07", "remaining_time": "23:41:50"}
{"current_steps": 116, "total_steps": 658, "loss": 2.6885, "learning_rate": 9.451674501286436e-06, "epoch": 0.17619138029238657, "percentage": 17.63, "elapsed_time": "5:03:44", "remaining_time": "23:39:13"}
{"current_steps": 117, "total_steps": 658, "loss": 2.6041, "learning_rate": 9.440410649538592e-06, "epoch": 0.17771027150180368, "percentage": 17.78, "elapsed_time": "5:06:22", "remaining_time": "23:36:38"}
{"current_steps": 118, "total_steps": 658, "loss": 2.6156, "learning_rate": 9.42903913127819e-06, "epoch": 0.1792291627112208, "percentage": 17.93, "elapsed_time": "5:08:59", "remaining_time": "23:34:02"}
{"current_steps": 119, "total_steps": 658, "loss": 2.5769, "learning_rate": 9.417560222230115e-06, "epoch": 0.18074805392063795, "percentage": 18.09, "elapsed_time": "5:11:37", "remaining_time": "23:31:26"}
{"current_steps": 120, "total_steps": 658, "loss": 2.5831, "learning_rate": 9.405974200723156e-06, "epoch": 0.18226694513005506, "percentage": 18.24, "elapsed_time": "5:14:14", "remaining_time": "23:28:50"}
{"current_steps": 121, "total_steps": 658, "loss": 2.7265, "learning_rate": 9.394281347683247e-06, "epoch": 0.18378583633947218, "percentage": 18.39, "elapsed_time": "5:16:51", "remaining_time": "23:26:13"}
{"current_steps": 122, "total_steps": 658, "loss": 2.6134, "learning_rate": 9.382481946626673e-06, "epoch": 0.1853047275488893, "percentage": 18.54, "elapsed_time": "5:19:28", "remaining_time": "23:23:37"}
{"current_steps": 123, "total_steps": 658, "loss": 2.5806, "learning_rate": 9.370576283653178e-06, "epoch": 0.18682361875830644, "percentage": 18.69, "elapsed_time": "5:22:06", "remaining_time": "23:21:00"}
{"current_steps": 124, "total_steps": 658, "loss": 2.5152, "learning_rate": 9.358564647439037e-06, "epoch": 0.18834250996772356, "percentage": 18.84, "elapsed_time": "5:24:43", "remaining_time": "23:18:24"}
{"current_steps": 125, "total_steps": 658, "loss": 2.6123, "learning_rate": 9.34644732923006e-06, "epoch": 0.18986140117714068, "percentage": 19.0, "elapsed_time": "5:27:20", "remaining_time": "23:15:48"}
{"current_steps": 126, "total_steps": 658, "loss": 2.6245, "learning_rate": 9.33422462283452e-06, "epoch": 0.19138029238655782, "percentage": 19.15, "elapsed_time": "5:29:58", "remaining_time": "23:13:13"}
{"current_steps": 127, "total_steps": 658, "loss": 2.5982, "learning_rate": 9.321896824616036e-06, "epoch": 0.19289918359597494, "percentage": 19.3, "elapsed_time": "5:32:35", "remaining_time": "23:10:37"}
{"current_steps": 128, "total_steps": 658, "loss": 2.61, "learning_rate": 9.309464233486386e-06, "epoch": 0.19441807480539205, "percentage": 19.45, "elapsed_time": "5:35:13", "remaining_time": "23:08:01"}
{"current_steps": 129, "total_steps": 658, "loss": 2.5773, "learning_rate": 9.29692715089826e-06, "epoch": 0.1959369660148092, "percentage": 19.6, "elapsed_time": "5:37:50", "remaining_time": "23:05:25"}
{"current_steps": 130, "total_steps": 658, "loss": 2.5853, "learning_rate": 9.284285880837947e-06, "epoch": 0.19745585722422632, "percentage": 19.76, "elapsed_time": "5:40:28", "remaining_time": "23:02:49"}
{"current_steps": 131, "total_steps": 658, "loss": 2.5594, "learning_rate": 9.271540729817969e-06, "epoch": 0.19897474843364343, "percentage": 19.91, "elapsed_time": "5:43:05", "remaining_time": "23:00:13"}
{"current_steps": 132, "total_steps": 658, "loss": 2.5041, "learning_rate": 9.258692006869644e-06, "epoch": 0.20049363964306058, "percentage": 20.06, "elapsed_time": "5:45:42", "remaining_time": "22:57:36"}
{"current_steps": 133, "total_steps": 658, "loss": 2.5043, "learning_rate": 9.245740023535596e-06, "epoch": 0.2020125308524777, "percentage": 20.21, "elapsed_time": "5:48:19", "remaining_time": "22:54:59"}
{"current_steps": 134, "total_steps": 658, "loss": 2.5629, "learning_rate": 9.232685093862206e-06, "epoch": 0.2035314220618948, "percentage": 20.36, "elapsed_time": "5:50:56", "remaining_time": "22:52:22"}
{"current_steps": 135, "total_steps": 658, "loss": 2.5121, "learning_rate": 9.219527534391983e-06, "epoch": 0.20505031327131193, "percentage": 20.52, "elapsed_time": "5:53:34", "remaining_time": "22:49:45"}
{"current_steps": 136, "total_steps": 658, "loss": 2.5578, "learning_rate": 9.206267664155906e-06, "epoch": 0.20656920448072907, "percentage": 20.67, "elapsed_time": "5:56:11", "remaining_time": "22:47:08"}
{"current_steps": 137, "total_steps": 658, "loss": 2.5341, "learning_rate": 9.192905804665677e-06, "epoch": 0.2080880956901462, "percentage": 20.82, "elapsed_time": "5:58:48", "remaining_time": "22:44:31"}
{"current_steps": 138, "total_steps": 658, "loss": 2.5867, "learning_rate": 9.179442279905927e-06, "epoch": 0.2096069868995633, "percentage": 20.97, "elapsed_time": "6:01:25", "remaining_time": "22:41:53"}
{"current_steps": 139, "total_steps": 658, "loss": 2.6066, "learning_rate": 9.165877416326365e-06, "epoch": 0.21112587810898045, "percentage": 21.12, "elapsed_time": "6:04:02", "remaining_time": "22:39:15"}
{"current_steps": 140, "total_steps": 658, "loss": 2.6332, "learning_rate": 9.152211542833856e-06, "epoch": 0.21264476931839757, "percentage": 21.28, "elapsed_time": "6:06:39", "remaining_time": "22:36:38"}
{"current_steps": 141, "total_steps": 658, "loss": 2.5835, "learning_rate": 9.138444990784455e-06, "epoch": 0.2141636605278147, "percentage": 21.43, "elapsed_time": "6:09:16", "remaining_time": "22:34:01"}
{"current_steps": 142, "total_steps": 658, "loss": 2.622, "learning_rate": 9.124578093975358e-06, "epoch": 0.21568255173723183, "percentage": 21.58, "elapsed_time": "6:11:54", "remaining_time": "22:31:24"}
{"current_steps": 143, "total_steps": 658, "loss": 2.5668, "learning_rate": 9.110611188636828e-06, "epoch": 0.21720144294664895, "percentage": 21.73, "elapsed_time": "6:14:31", "remaining_time": "22:28:47"}
{"current_steps": 144, "total_steps": 658, "loss": 2.6229, "learning_rate": 9.096544613424026e-06, "epoch": 0.21872033415606607, "percentage": 21.88, "elapsed_time": "6:17:08", "remaining_time": "22:26:09"}
{"current_steps": 145, "total_steps": 658, "loss": 2.5456, "learning_rate": 9.082378709408805e-06, "epoch": 0.2202392253654832, "percentage": 22.04, "elapsed_time": "6:19:45", "remaining_time": "22:23:32"}
{"current_steps": 146, "total_steps": 658, "loss": 2.4778, "learning_rate": 9.068113820071447e-06, "epoch": 0.22175811657490033, "percentage": 22.19, "elapsed_time": "6:22:22", "remaining_time": "22:20:54"}
{"current_steps": 147, "total_steps": 658, "loss": 2.4628, "learning_rate": 9.053750291292321e-06, "epoch": 0.22327700778431744, "percentage": 22.34, "elapsed_time": "6:24:59", "remaining_time": "22:18:16"}
{"current_steps": 148, "total_steps": 658, "loss": 2.5147, "learning_rate": 9.039288471343505e-06, "epoch": 0.22479589899373456, "percentage": 22.49, "elapsed_time": "6:27:36", "remaining_time": "22:15:39"}
{"current_steps": 149, "total_steps": 658, "loss": 2.5673, "learning_rate": 9.024728710880345e-06, "epoch": 0.2263147902031517, "percentage": 22.64, "elapsed_time": "6:30:13", "remaining_time": "22:13:02"}
{"current_steps": 150, "total_steps": 658, "loss": 2.5198, "learning_rate": 9.010071362932945e-06, "epoch": 0.22783368141256882, "percentage": 22.8, "elapsed_time": "6:32:50", "remaining_time": "22:10:25"}
{"current_steps": 151, "total_steps": 658, "loss": 2.5247, "learning_rate": 8.995316782897605e-06, "epoch": 0.22935257262198594, "percentage": 22.95, "elapsed_time": "6:35:27", "remaining_time": "22:07:48"}
{"current_steps": 152, "total_steps": 658, "loss": 2.5068, "learning_rate": 8.98046532852822e-06, "epoch": 0.23087146383140308, "percentage": 23.1, "elapsed_time": "6:38:04", "remaining_time": "22:05:11"}
{"current_steps": 153, "total_steps": 658, "loss": 2.5362, "learning_rate": 8.965517359927583e-06, "epoch": 0.2323903550408202, "percentage": 23.25, "elapsed_time": "6:40:42", "remaining_time": "22:02:34"}
{"current_steps": 154, "total_steps": 658, "loss": 2.5166, "learning_rate": 8.950473239538672e-06, "epoch": 0.23390924625023732, "percentage": 23.4, "elapsed_time": "6:43:19", "remaining_time": "21:59:57"}
{"current_steps": 155, "total_steps": 658, "loss": 2.502, "learning_rate": 8.935333332135853e-06, "epoch": 0.23542813745965446, "percentage": 23.56, "elapsed_time": "6:45:56", "remaining_time": "21:57:20"}
{"current_steps": 156, "total_steps": 658, "loss": 2.5186, "learning_rate": 8.920098004816035e-06, "epoch": 0.23694702866907158, "percentage": 23.71, "elapsed_time": "6:48:33", "remaining_time": "21:54:42"}
{"current_steps": 157, "total_steps": 658, "loss": 2.5439, "learning_rate": 8.904767626989774e-06, "epoch": 0.2384659198784887, "percentage": 23.86, "elapsed_time": "6:51:10", "remaining_time": "21:52:05"}
{"current_steps": 158, "total_steps": 658, "loss": 2.5026, "learning_rate": 8.88934257037231e-06, "epoch": 0.23998481108790584, "percentage": 24.01, "elapsed_time": "6:53:47", "remaining_time": "21:49:28"}
{"current_steps": 159, "total_steps": 658, "loss": 2.5948, "learning_rate": 8.873823208974557e-06, "epoch": 0.24150370229732296, "percentage": 24.16, "elapsed_time": "6:56:24", "remaining_time": "21:46:50"}
{"current_steps": 160, "total_steps": 658, "loss": 2.5613, "learning_rate": 8.85820991909404e-06, "epoch": 0.24302259350674008, "percentage": 24.32, "elapsed_time": "6:59:01", "remaining_time": "21:44:12"}
{"current_steps": 161, "total_steps": 658, "loss": 2.5053, "learning_rate": 8.842503079305757e-06, "epoch": 0.2445414847161572, "percentage": 24.47, "elapsed_time": "7:01:38", "remaining_time": "21:41:35"}
{"current_steps": 162, "total_steps": 658, "loss": 2.4929, "learning_rate": 8.826703070453014e-06, "epoch": 0.24606037592557434, "percentage": 24.62, "elapsed_time": "7:04:15", "remaining_time": "21:38:58"}
{"current_steps": 163, "total_steps": 658, "loss": 2.4863, "learning_rate": 8.810810275638183e-06, "epoch": 0.24757926713499145, "percentage": 24.77, "elapsed_time": "7:06:52", "remaining_time": "21:36:20"}
{"current_steps": 164, "total_steps": 658, "loss": 2.5587, "learning_rate": 8.794825080213415e-06, "epoch": 0.24909815834440857, "percentage": 24.92, "elapsed_time": "7:09:29", "remaining_time": "21:33:43"}
{"current_steps": 165, "total_steps": 658, "loss": 2.5292, "learning_rate": 8.778747871771293e-06, "epoch": 0.2506170495538257, "percentage": 25.08, "elapsed_time": "7:12:06", "remaining_time": "21:31:05"}
{"current_steps": 166, "total_steps": 658, "loss": 2.5414, "learning_rate": 8.76257904013544e-06, "epoch": 0.2521359407632428, "percentage": 25.23, "elapsed_time": "7:14:43", "remaining_time": "21:28:28"}
{"current_steps": 167, "total_steps": 658, "loss": 2.5376, "learning_rate": 8.746318977351066e-06, "epoch": 0.25365483197266, "percentage": 25.38, "elapsed_time": "7:17:20", "remaining_time": "21:25:51"}
{"current_steps": 168, "total_steps": 658, "loss": 2.5962, "learning_rate": 8.729968077675454e-06, "epoch": 0.2551737231820771, "percentage": 25.53, "elapsed_time": "7:19:58", "remaining_time": "21:23:14"}
{"current_steps": 169, "total_steps": 658, "loss": 2.5141, "learning_rate": 8.713526737568415e-06, "epoch": 0.2566926143914942, "percentage": 25.68, "elapsed_time": "7:22:35", "remaining_time": "21:20:38"}
{"current_steps": 170, "total_steps": 658, "loss": 2.6006, "learning_rate": 8.696995355682656e-06, "epoch": 0.25821150560091133, "percentage": 25.84, "elapsed_time": "7:25:12", "remaining_time": "21:18:01"}
{"current_steps": 171, "total_steps": 658, "loss": 2.4407, "learning_rate": 8.680374332854134e-06, "epoch": 0.25973039681032845, "percentage": 25.99, "elapsed_time": "7:27:49", "remaining_time": "21:15:23"}
{"current_steps": 172, "total_steps": 658, "loss": 2.4783, "learning_rate": 8.663664072092324e-06, "epoch": 0.26124928801974556, "percentage": 26.14, "elapsed_time": "7:30:26", "remaining_time": "21:12:46"}
{"current_steps": 173, "total_steps": 658, "loss": 2.513, "learning_rate": 8.646864978570445e-06, "epoch": 0.26276817922916273, "percentage": 26.29, "elapsed_time": "7:33:03", "remaining_time": "21:10:09"}
{"current_steps": 174, "total_steps": 658, "loss": 2.4805, "learning_rate": 8.629977459615655e-06, "epoch": 0.26428707043857985, "percentage": 26.44, "elapsed_time": "7:35:41", "remaining_time": "21:07:32"}
{"current_steps": 175, "total_steps": 658, "loss": 2.5176, "learning_rate": 8.613001924699146e-06, "epoch": 0.26580596164799697, "percentage": 26.6, "elapsed_time": "7:38:18", "remaining_time": "21:04:54"}
{"current_steps": 176, "total_steps": 658, "loss": 2.5586, "learning_rate": 8.595938785426241e-06, "epoch": 0.2673248528574141, "percentage": 26.75, "elapsed_time": "7:40:55", "remaining_time": "21:02:17"}
{"current_steps": 177, "total_steps": 658, "loss": 2.4918, "learning_rate": 8.578788455526398e-06, "epoch": 0.2688437440668312, "percentage": 26.9, "elapsed_time": "7:43:32", "remaining_time": "20:59:40"}
{"current_steps": 178, "total_steps": 658, "loss": 2.5574, "learning_rate": 8.561551350843185e-06, "epoch": 0.2703626352762483, "percentage": 27.05, "elapsed_time": "7:46:09", "remaining_time": "20:57:02"}
{"current_steps": 179, "total_steps": 658, "loss": 2.4831, "learning_rate": 8.544227889324199e-06, "epoch": 0.27188152648566544, "percentage": 27.2, "elapsed_time": "7:48:46", "remaining_time": "20:54:25"}
{"current_steps": 180, "total_steps": 658, "loss": 2.5496, "learning_rate": 8.526818491010922e-06, "epoch": 0.2734004176950826, "percentage": 27.36, "elapsed_time": "7:51:23", "remaining_time": "20:51:47"}
{"current_steps": 181, "total_steps": 658, "loss": 2.5047, "learning_rate": 8.509323578028547e-06, "epoch": 0.2749193089044997, "percentage": 27.51, "elapsed_time": "7:54:00", "remaining_time": "20:49:09"}
{"current_steps": 182, "total_steps": 658, "loss": 2.4502, "learning_rate": 8.491743574575743e-06, "epoch": 0.27643820011391684, "percentage": 27.66, "elapsed_time": "7:56:37", "remaining_time": "20:46:32"}
{"current_steps": 183, "total_steps": 658, "loss": 2.5617, "learning_rate": 8.474078906914359e-06, "epoch": 0.27795709132333396, "percentage": 27.81, "elapsed_time": "7:59:14", "remaining_time": "20:43:54"}
{"current_steps": 184, "total_steps": 658, "loss": 2.4827, "learning_rate": 8.456330003359093e-06, "epoch": 0.2794759825327511, "percentage": 27.96, "elapsed_time": "8:01:51", "remaining_time": "20:41:17"}
{"current_steps": 185, "total_steps": 658, "loss": 2.5726, "learning_rate": 8.438497294267117e-06, "epoch": 0.2809948737421682, "percentage": 28.12, "elapsed_time": "8:04:28", "remaining_time": "20:38:40"}
{"current_steps": 186, "total_steps": 658, "loss": 2.4644, "learning_rate": 8.420581212027625e-06, "epoch": 0.28251376495158537, "percentage": 28.27, "elapsed_time": "8:07:05", "remaining_time": "20:36:02"}
{"current_steps": 187, "total_steps": 658, "loss": 2.4287, "learning_rate": 8.402582191051365e-06, "epoch": 0.2840326561610025, "percentage": 28.42, "elapsed_time": "8:09:42", "remaining_time": "20:33:25"}
{"current_steps": 188, "total_steps": 658, "loss": 2.5467, "learning_rate": 8.38450066776009e-06, "epoch": 0.2855515473704196, "percentage": 28.57, "elapsed_time": "8:12:19", "remaining_time": "20:30:48"}
{"current_steps": 189, "total_steps": 658, "loss": 2.4555, "learning_rate": 8.36633708057599e-06, "epoch": 0.2870704385798367, "percentage": 28.72, "elapsed_time": "8:14:56", "remaining_time": "20:28:10"}
{"current_steps": 190, "total_steps": 658, "loss": 2.5255, "learning_rate": 8.348091869911054e-06, "epoch": 0.28858932978925383, "percentage": 28.88, "elapsed_time": "8:17:33", "remaining_time": "20:25:33"}
{"current_steps": 191, "total_steps": 658, "loss": 2.5443, "learning_rate": 8.329765478156394e-06, "epoch": 0.29010822099867095, "percentage": 29.03, "elapsed_time": "8:20:10", "remaining_time": "20:22:55"}
{"current_steps": 192, "total_steps": 658, "loss": 2.5705, "learning_rate": 8.311358349671516e-06, "epoch": 0.29162711220808807, "percentage": 29.18, "elapsed_time": "8:22:47", "remaining_time": "20:20:18"}
{"current_steps": 193, "total_steps": 658, "loss": 2.4817, "learning_rate": 8.292870930773551e-06, "epoch": 0.29314600341750524, "percentage": 29.33, "elapsed_time": "8:25:24", "remaining_time": "20:17:41"}
{"current_steps": 194, "total_steps": 658, "loss": 2.5036, "learning_rate": 8.274303669726427e-06, "epoch": 0.29466489462692236, "percentage": 29.48, "elapsed_time": "8:28:01", "remaining_time": "20:15:03"}
{"current_steps": 195, "total_steps": 658, "loss": 2.5086, "learning_rate": 8.255657016729997e-06, "epoch": 0.2961837858363395, "percentage": 29.64, "elapsed_time": "8:30:38", "remaining_time": "20:12:26"}
{"current_steps": 196, "total_steps": 658, "loss": 2.4332, "learning_rate": 8.23693142390914e-06, "epoch": 0.2977026770457566, "percentage": 29.79, "elapsed_time": "8:33:15", "remaining_time": "20:09:48"}
{"current_steps": 197, "total_steps": 658, "loss": 2.4879, "learning_rate": 8.218127345302775e-06, "epoch": 0.2992215682551737, "percentage": 29.94, "elapsed_time": "8:35:52", "remaining_time": "20:07:11"}
{"current_steps": 198, "total_steps": 658, "loss": 2.5324, "learning_rate": 8.199245236852871e-06, "epoch": 0.3007404594645908, "percentage": 30.09, "elapsed_time": "8:38:29", "remaining_time": "20:04:34"}
{"current_steps": 199, "total_steps": 658, "loss": 2.4826, "learning_rate": 8.180285556393384e-06, "epoch": 0.302259350674008, "percentage": 30.24, "elapsed_time": "8:41:06", "remaining_time": "20:01:56"}
{"current_steps": 200, "total_steps": 658, "loss": 2.4943, "learning_rate": 8.161248763639154e-06, "epoch": 0.3037782418834251, "percentage": 30.4, "elapsed_time": "8:43:43", "remaining_time": "19:59:19"}
{"current_steps": 201, "total_steps": 658, "loss": 2.4246, "learning_rate": 8.142135320174758e-06, "epoch": 0.30529713309284223, "percentage": 30.55, "elapsed_time": "8:47:00", "remaining_time": "19:58:14"}
{"current_steps": 202, "total_steps": 658, "loss": 2.4313, "learning_rate": 8.122945689443328e-06, "epoch": 0.30681602430225935, "percentage": 30.7, "elapsed_time": "8:49:38", "remaining_time": "19:55:36"}
{"current_steps": 203, "total_steps": 658, "loss": 2.559, "learning_rate": 8.1036803367353e-06, "epoch": 0.30833491551167647, "percentage": 30.85, "elapsed_time": "8:52:15", "remaining_time": "19:52:59"}
{"current_steps": 204, "total_steps": 658, "loss": 2.514, "learning_rate": 8.084339729177142e-06, "epoch": 0.3098538067210936, "percentage": 31.0, "elapsed_time": "8:54:52", "remaining_time": "19:50:21"}
{"current_steps": 205, "total_steps": 658, "loss": 2.4889, "learning_rate": 8.064924335720023e-06, "epoch": 0.3113726979305107, "percentage": 31.16, "elapsed_time": "8:57:29", "remaining_time": "19:47:43"}
{"current_steps": 206, "total_steps": 658, "loss": 2.4603, "learning_rate": 8.045434627128446e-06, "epoch": 0.3128915891399279, "percentage": 31.31, "elapsed_time": "9:00:06", "remaining_time": "19:45:06"}
{"current_steps": 207, "total_steps": 658, "loss": 2.4971, "learning_rate": 8.025871075968828e-06, "epoch": 0.314410480349345, "percentage": 31.46, "elapsed_time": "9:02:44", "remaining_time": "19:42:28"}
{"current_steps": 208, "total_steps": 658, "loss": 2.5571, "learning_rate": 8.006234156598043e-06, "epoch": 0.3159293715587621, "percentage": 31.61, "elapsed_time": "9:05:21", "remaining_time": "19:39:51"}
{"current_steps": 209, "total_steps": 658, "loss": 2.5384, "learning_rate": 7.986524345151924e-06, "epoch": 0.3174482627681792, "percentage": 31.76, "elapsed_time": "9:07:58", "remaining_time": "19:37:14"}
{"current_steps": 210, "total_steps": 658, "loss": 2.4885, "learning_rate": 7.966742119533724e-06, "epoch": 0.31896715397759634, "percentage": 31.91, "elapsed_time": "9:10:35", "remaining_time": "19:34:36"}
{"current_steps": 211, "total_steps": 658, "loss": 2.4381, "learning_rate": 7.946887959402504e-06, "epoch": 0.32048604518701346, "percentage": 32.07, "elapsed_time": "9:13:13", "remaining_time": "19:31:59"}
{"current_steps": 212, "total_steps": 658, "loss": 2.5199, "learning_rate": 7.926962346161535e-06, "epoch": 0.32200493639643063, "percentage": 32.22, "elapsed_time": "9:15:50", "remaining_time": "19:29:22"}
{"current_steps": 213, "total_steps": 658, "loss": 2.5338, "learning_rate": 7.9069657629466e-06, "epoch": 0.32352382760584775, "percentage": 32.37, "elapsed_time": "9:18:27", "remaining_time": "19:26:44"}
{"current_steps": 214, "total_steps": 658, "loss": 2.4292, "learning_rate": 7.886898694614292e-06, "epoch": 0.32504271881526486, "percentage": 32.52, "elapsed_time": "9:21:05", "remaining_time": "19:24:07"}
{"current_steps": 215, "total_steps": 658, "loss": 2.4925, "learning_rate": 7.866761627730253e-06, "epoch": 0.326561610024682, "percentage": 32.67, "elapsed_time": "9:23:42", "remaining_time": "19:21:30"}
{"current_steps": 216, "total_steps": 658, "loss": 2.4482, "learning_rate": 7.846555050557381e-06, "epoch": 0.3280805012340991, "percentage": 32.83, "elapsed_time": "9:26:19", "remaining_time": "19:18:52"}
{"current_steps": 217, "total_steps": 658, "loss": 2.5279, "learning_rate": 7.826279453043985e-06, "epoch": 0.3295993924435162, "percentage": 32.98, "elapsed_time": "9:28:57", "remaining_time": "19:16:15"}
{"current_steps": 218, "total_steps": 658, "loss": 2.4002, "learning_rate": 7.805935326811913e-06, "epoch": 0.33111828365293333, "percentage": 33.13, "elapsed_time": "9:31:34", "remaining_time": "19:13:38"}
{"current_steps": 219, "total_steps": 658, "loss": 2.3698, "learning_rate": 7.78552316514462e-06, "epoch": 0.3326371748623505, "percentage": 33.28, "elapsed_time": "9:34:11", "remaining_time": "19:11:00"}
{"current_steps": 220, "total_steps": 658, "loss": 2.4626, "learning_rate": 7.765043462975217e-06, "epoch": 0.3341560660717676, "percentage": 33.43, "elapsed_time": "9:36:48", "remaining_time": "19:08:22"}
{"current_steps": 221, "total_steps": 658, "loss": 2.5538, "learning_rate": 7.744496716874472e-06, "epoch": 0.33567495728118474, "percentage": 33.59, "elapsed_time": "9:39:25", "remaining_time": "19:05:44"}
{"current_steps": 222, "total_steps": 658, "loss": 2.4648, "learning_rate": 7.723883425038759e-06, "epoch": 0.33719384849060186, "percentage": 33.74, "elapsed_time": "9:42:02", "remaining_time": "19:03:07"}
{"current_steps": 223, "total_steps": 658, "loss": 2.3859, "learning_rate": 7.703204087277989e-06, "epoch": 0.33871273970001897, "percentage": 33.89, "elapsed_time": "9:44:39", "remaining_time": "19:00:29"}
{"current_steps": 224, "total_steps": 658, "loss": 2.4553, "learning_rate": 7.682459205003484e-06, "epoch": 0.3402316309094361, "percentage": 34.04, "elapsed_time": "9:47:17", "remaining_time": "18:57:51"}
{"current_steps": 225, "total_steps": 658, "loss": 2.5044, "learning_rate": 7.661649281215823e-06, "epoch": 0.34175052211885326, "percentage": 34.19, "elapsed_time": "9:49:54", "remaining_time": "18:55:14"}
{"current_steps": 226, "total_steps": 658, "loss": 2.4061, "learning_rate": 7.640774820492647e-06, "epoch": 0.3432694133282704, "percentage": 34.35, "elapsed_time": "9:52:31", "remaining_time": "18:52:36"}
{"current_steps": 227, "total_steps": 658, "loss": 2.4957, "learning_rate": 7.619836328976416e-06, "epoch": 0.3447883045376875, "percentage": 34.5, "elapsed_time": "9:55:08", "remaining_time": "18:49:58"}
{"current_steps": 228, "total_steps": 658, "loss": 2.383, "learning_rate": 7.598834314362151e-06, "epoch": 0.3463071957471046, "percentage": 34.65, "elapsed_time": "9:57:45", "remaining_time": "18:47:21"}
{"current_steps": 229, "total_steps": 658, "loss": 2.4998, "learning_rate": 7.57776928588511e-06, "epoch": 0.34782608695652173, "percentage": 34.8, "elapsed_time": "10:00:22", "remaining_time": "18:44:43"}
{"current_steps": 230, "total_steps": 658, "loss": 2.4103, "learning_rate": 7.556641754308447e-06, "epoch": 0.34934497816593885, "percentage": 34.95, "elapsed_time": "10:02:59", "remaining_time": "18:42:05"}
{"current_steps": 231, "total_steps": 658, "loss": 2.4448, "learning_rate": 7.535452231910829e-06, "epoch": 0.35086386937535596, "percentage": 35.11, "elapsed_time": "10:05:36", "remaining_time": "18:39:27"}
{"current_steps": 232, "total_steps": 658, "loss": 2.4017, "learning_rate": 7.514201232474012e-06, "epoch": 0.35238276058477314, "percentage": 35.26, "elapsed_time": "10:08:13", "remaining_time": "18:36:50"}
{"current_steps": 233, "total_steps": 658, "loss": 2.4629, "learning_rate": 7.492889271270382e-06, "epoch": 0.35390165179419025, "percentage": 35.41, "elapsed_time": "10:10:50", "remaining_time": "18:34:12"}
{"current_steps": 234, "total_steps": 658, "loss": 2.4281, "learning_rate": 7.471516865050468e-06, "epoch": 0.35542054300360737, "percentage": 35.56, "elapsed_time": "10:13:28", "remaining_time": "18:31:34"}
{"current_steps": 235, "total_steps": 658, "loss": 2.4231, "learning_rate": 7.450084532030402e-06, "epoch": 0.3569394342130245, "percentage": 35.71, "elapsed_time": "10:16:05", "remaining_time": "18:28:57"}
{"current_steps": 236, "total_steps": 658, "loss": 2.4429, "learning_rate": 7.428592791879361e-06, "epoch": 0.3584583254224416, "percentage": 35.87, "elapsed_time": "10:18:42", "remaining_time": "18:26:19"}
{"current_steps": 237, "total_steps": 658, "loss": 2.469, "learning_rate": 7.407042165706969e-06, "epoch": 0.3599772166318587, "percentage": 36.02, "elapsed_time": "10:21:19", "remaining_time": "18:23:41"}
{"current_steps": 238, "total_steps": 658, "loss": 2.5211, "learning_rate": 7.385433176050654e-06, "epoch": 0.3614961078412759, "percentage": 36.17, "elapsed_time": "10:23:56", "remaining_time": "18:21:04"}
{"current_steps": 239, "total_steps": 658, "loss": 2.4338, "learning_rate": 7.36376634686298e-06, "epoch": 0.363014999050693, "percentage": 36.32, "elapsed_time": "10:26:33", "remaining_time": "18:18:26"}
{"current_steps": 240, "total_steps": 658, "loss": 2.5161, "learning_rate": 7.342042203498952e-06, "epoch": 0.3645338902601101, "percentage": 36.47, "elapsed_time": "10:29:10", "remaining_time": "18:15:49"}
{"current_steps": 241, "total_steps": 658, "loss": 2.4728, "learning_rate": 7.320261272703259e-06, "epoch": 0.36605278146952724, "percentage": 36.63, "elapsed_time": "10:31:47", "remaining_time": "18:13:11"}
{"current_steps": 242, "total_steps": 658, "loss": 2.4609, "learning_rate": 7.298424082597526e-06, "epoch": 0.36757167267894436, "percentage": 36.78, "elapsed_time": "10:34:25", "remaining_time": "18:10:34"}
{"current_steps": 243, "total_steps": 658, "loss": 2.4977, "learning_rate": 7.276531162667484e-06, "epoch": 0.3690905638883615, "percentage": 36.93, "elapsed_time": "10:37:02", "remaining_time": "18:07:56"}
{"current_steps": 244, "total_steps": 658, "loss": 2.4324, "learning_rate": 7.254583043750152e-06, "epoch": 0.3706094550977786, "percentage": 37.08, "elapsed_time": "10:39:39", "remaining_time": "18:05:19"}
{"current_steps": 245, "total_steps": 658, "loss": 2.4407, "learning_rate": 7.232580258020952e-06, "epoch": 0.37212834630719577, "percentage": 37.23, "elapsed_time": "10:42:17", "remaining_time": "18:02:42"}
{"current_steps": 246, "total_steps": 658, "loss": 2.5021, "learning_rate": 7.210523338980814e-06, "epoch": 0.3736472375166129, "percentage": 37.39, "elapsed_time": "10:44:54", "remaining_time": "18:00:05"}
{"current_steps": 247, "total_steps": 658, "loss": 2.4268, "learning_rate": 7.1884128214432366e-06, "epoch": 0.37516612872603, "percentage": 37.54, "elapsed_time": "10:47:31", "remaining_time": "17:57:27"}
{"current_steps": 248, "total_steps": 658, "loss": 2.4063, "learning_rate": 7.1662492415213194e-06, "epoch": 0.3766850199354471, "percentage": 37.69, "elapsed_time": "10:50:08", "remaining_time": "17:54:50"}
{"current_steps": 249, "total_steps": 658, "loss": 2.4253, "learning_rate": 7.14403313661476e-06, "epoch": 0.37820391114486424, "percentage": 37.84, "elapsed_time": "10:52:45", "remaining_time": "17:52:12"}
{"current_steps": 250, "total_steps": 658, "loss": 2.461, "learning_rate": 7.1217650453968335e-06, "epoch": 0.37972280235428135, "percentage": 37.99, "elapsed_time": "10:55:23", "remaining_time": "17:49:35"}
{"current_steps": 251, "total_steps": 658, "loss": 2.5152, "learning_rate": 7.099445507801324e-06, "epoch": 0.3812416935636985, "percentage": 38.15, "elapsed_time": "10:58:00", "remaining_time": "17:46:57"}
{"current_steps": 252, "total_steps": 658, "loss": 2.4101, "learning_rate": 7.0770750650094335e-06, "epoch": 0.38276058477311564, "percentage": 38.3, "elapsed_time": "11:00:37", "remaining_time": "17:44:20"}
{"current_steps": 253, "total_steps": 658, "loss": 2.5015, "learning_rate": 7.0546542594366605e-06, "epoch": 0.38427947598253276, "percentage": 38.45, "elapsed_time": "11:03:14", "remaining_time": "17:41:43"}
{"current_steps": 254, "total_steps": 658, "loss": 2.4964, "learning_rate": 7.03218363471965e-06, "epoch": 0.3857983671919499, "percentage": 38.6, "elapsed_time": "11:05:51", "remaining_time": "17:39:05"}
{"current_steps": 255, "total_steps": 658, "loss": 2.4427, "learning_rate": 7.0096637357030105e-06, "epoch": 0.387317258401367, "percentage": 38.75, "elapsed_time": "11:08:29", "remaining_time": "17:36:28"}
{"current_steps": 256, "total_steps": 658, "loss": 2.3514, "learning_rate": 6.987095108426102e-06, "epoch": 0.3888361496107841, "percentage": 38.91, "elapsed_time": "11:11:06", "remaining_time": "17:33:50"}
{"current_steps": 257, "total_steps": 658, "loss": 2.4921, "learning_rate": 6.964478300109796e-06, "epoch": 0.3903550408202012, "percentage": 39.06, "elapsed_time": "11:13:43", "remaining_time": "17:31:13"}
{"current_steps": 258, "total_steps": 658, "loss": 2.4503, "learning_rate": 6.94181385914321e-06, "epoch": 0.3918739320296184, "percentage": 39.21, "elapsed_time": "11:16:20", "remaining_time": "17:28:36"}
{"current_steps": 259, "total_steps": 658, "loss": 2.3622, "learning_rate": 6.91910233507041e-06, "epoch": 0.3933928232390355, "percentage": 39.36, "elapsed_time": "11:18:58", "remaining_time": "17:25:58"}
{"current_steps": 260, "total_steps": 658, "loss": 2.4076, "learning_rate": 6.896344278577083e-06, "epoch": 0.39491171444845263, "percentage": 39.51, "elapsed_time": "11:21:35", "remaining_time": "17:23:21"}
{"current_steps": 261, "total_steps": 658, "loss": 2.4053, "learning_rate": 6.873540241477189e-06, "epoch": 0.39643060565786975, "percentage": 39.67, "elapsed_time": "11:24:12", "remaining_time": "17:20:43"}
{"current_steps": 262, "total_steps": 658, "loss": 2.4828, "learning_rate": 6.850690776699574e-06, "epoch": 0.39794949686728687, "percentage": 39.82, "elapsed_time": "11:26:49", "remaining_time": "17:18:06"}
{"current_steps": 263, "total_steps": 658, "loss": 2.4118, "learning_rate": 6.8277964382745675e-06, "epoch": 0.399468388076704, "percentage": 39.97, "elapsed_time": "11:29:26", "remaining_time": "17:15:28"}
{"current_steps": 264, "total_steps": 658, "loss": 2.4467, "learning_rate": 6.804857781320558e-06, "epoch": 0.40098727928612116, "percentage": 40.12, "elapsed_time": "11:32:03", "remaining_time": "17:12:51"}
{"current_steps": 265, "total_steps": 658, "loss": 2.5718, "learning_rate": 6.781875362030512e-06, "epoch": 0.4025061704955383, "percentage": 40.27, "elapsed_time": "11:34:41", "remaining_time": "17:10:13"}
{"current_steps": 266, "total_steps": 658, "loss": 2.5041, "learning_rate": 6.758849737658508e-06, "epoch": 0.4040250617049554, "percentage": 40.43, "elapsed_time": "11:37:18", "remaining_time": "17:07:36"}
{"current_steps": 267, "total_steps": 658, "loss": 2.4383, "learning_rate": 6.735781466506216e-06, "epoch": 0.4055439529143725, "percentage": 40.58, "elapsed_time": "11:39:55", "remaining_time": "17:04:59"}
{"current_steps": 268, "total_steps": 658, "loss": 2.478, "learning_rate": 6.712671107909359e-06, "epoch": 0.4070628441237896, "percentage": 40.73, "elapsed_time": "11:42:32", "remaining_time": "17:02:21"}
{"current_steps": 269, "total_steps": 658, "loss": 2.4207, "learning_rate": 6.6895192222241534e-06, "epoch": 0.40858173533320674, "percentage": 40.88, "elapsed_time": "11:45:09", "remaining_time": "16:59:44"}
{"current_steps": 270, "total_steps": 658, "loss": 2.4511, "learning_rate": 6.666326370813722e-06, "epoch": 0.41010062654262386, "percentage": 41.03, "elapsed_time": "11:47:47", "remaining_time": "16:57:07"}
{"current_steps": 271, "total_steps": 658, "loss": 2.4288, "learning_rate": 6.643093116034486e-06, "epoch": 0.41161951775204103, "percentage": 41.19, "elapsed_time": "11:50:24", "remaining_time": "16:54:29"}
{"current_steps": 272, "total_steps": 658, "loss": 2.437, "learning_rate": 6.619820021222518e-06, "epoch": 0.41313840896145815, "percentage": 41.34, "elapsed_time": "11:53:01", "remaining_time": "16:51:52"}
{"current_steps": 273, "total_steps": 658, "loss": 2.4671, "learning_rate": 6.5965076506799e-06, "epoch": 0.41465730017087526, "percentage": 41.49, "elapsed_time": "11:55:38", "remaining_time": "16:49:14"}
{"current_steps": 274, "total_steps": 658, "loss": 2.5018, "learning_rate": 6.573156569661026e-06, "epoch": 0.4161761913802924, "percentage": 41.64, "elapsed_time": "11:58:16", "remaining_time": "16:46:37"}
{"current_steps": 275, "total_steps": 658, "loss": 2.3747, "learning_rate": 6.549767344358903e-06, "epoch": 0.4176950825897095, "percentage": 41.79, "elapsed_time": "12:00:53", "remaining_time": "16:44:00"}
{"current_steps": 276, "total_steps": 658, "loss": 2.4567, "learning_rate": 6.526340541891418e-06, "epoch": 0.4192139737991266, "percentage": 41.95, "elapsed_time": "12:03:30", "remaining_time": "16:41:22"}
{"current_steps": 277, "total_steps": 658, "loss": 2.4371, "learning_rate": 6.5028767302875974e-06, "epoch": 0.4207328650085438, "percentage": 42.1, "elapsed_time": "12:06:07", "remaining_time": "16:38:45"}
{"current_steps": 278, "total_steps": 658, "loss": 2.3193, "learning_rate": 6.479376478473822e-06, "epoch": 0.4222517562179609, "percentage": 42.25, "elapsed_time": "12:08:44", "remaining_time": "16:36:07"}
{"current_steps": 279, "total_steps": 658, "loss": 2.4587, "learning_rate": 6.455840356260041e-06, "epoch": 0.423770647427378, "percentage": 42.4, "elapsed_time": "12:11:22", "remaining_time": "16:33:30"}
{"current_steps": 280, "total_steps": 658, "loss": 2.4221, "learning_rate": 6.432268934325947e-06, "epoch": 0.42528953863679514, "percentage": 42.55, "elapsed_time": "12:13:59", "remaining_time": "16:30:53"}
{"current_steps": 281, "total_steps": 658, "loss": 2.4534, "learning_rate": 6.408662784207149e-06, "epoch": 0.42680842984621226, "percentage": 42.71, "elapsed_time": "12:16:36", "remaining_time": "16:28:15"}
{"current_steps": 282, "total_steps": 658, "loss": 2.4384, "learning_rate": 6.385022478281307e-06, "epoch": 0.4283273210556294, "percentage": 42.86, "elapsed_time": "12:19:13", "remaining_time": "16:25:38"}
{"current_steps": 283, "total_steps": 658, "loss": 2.4464, "learning_rate": 6.361348589754255e-06, "epoch": 0.4298462122650465, "percentage": 43.01, "elapsed_time": "12:21:50", "remaining_time": "16:23:00"}
{"current_steps": 284, "total_steps": 658, "loss": 2.4387, "learning_rate": 6.337641692646106e-06, "epoch": 0.43136510347446366, "percentage": 43.16, "elapsed_time": "12:24:28", "remaining_time": "16:20:23"}
{"current_steps": 285, "total_steps": 658, "loss": 2.5006, "learning_rate": 6.313902361777327e-06, "epoch": 0.4328839946838808, "percentage": 43.31, "elapsed_time": "12:27:05", "remaining_time": "16:17:45"}
{"current_steps": 286, "total_steps": 658, "loss": 2.5047, "learning_rate": 6.290131172754811e-06, "epoch": 0.4344028858932979, "percentage": 43.47, "elapsed_time": "12:29:42", "remaining_time": "16:15:08"}
{"current_steps": 287, "total_steps": 658, "loss": 2.3543, "learning_rate": 6.266328701957911e-06, "epoch": 0.435921777102715, "percentage": 43.62, "elapsed_time": "12:32:19", "remaining_time": "16:12:30"}
{"current_steps": 288, "total_steps": 658, "loss": 2.5089, "learning_rate": 6.24249552652447e-06, "epoch": 0.43744066831213213, "percentage": 43.77, "elapsed_time": "12:34:56", "remaining_time": "16:09:53"}
{"current_steps": 289, "total_steps": 658, "loss": 2.4545, "learning_rate": 6.2186322243368236e-06, "epoch": 0.43895955952154925, "percentage": 43.92, "elapsed_time": "12:37:33", "remaining_time": "16:07:15"}
{"current_steps": 290, "total_steps": 658, "loss": 2.4691, "learning_rate": 6.194739374007792e-06, "epoch": 0.4404784507309664, "percentage": 44.07, "elapsed_time": "12:40:10", "remaining_time": "16:04:38"}
{"current_steps": 291, "total_steps": 658, "loss": 2.5019, "learning_rate": 6.170817554866646e-06, "epoch": 0.44199734194038354, "percentage": 44.22, "elapsed_time": "12:42:47", "remaining_time": "16:02:01"}
{"current_steps": 292, "total_steps": 658, "loss": 2.4309, "learning_rate": 6.1468673469450655e-06, "epoch": 0.44351623314980065, "percentage": 44.38, "elapsed_time": "12:45:25", "remaining_time": "15:59:23"}
{"current_steps": 293, "total_steps": 658, "loss": 2.4174, "learning_rate": 6.122889330963069e-06, "epoch": 0.44503512435921777, "percentage": 44.53, "elapsed_time": "12:48:02", "remaining_time": "15:56:46"}
{"current_steps": 294, "total_steps": 658, "loss": 2.4323, "learning_rate": 6.098884088314938e-06, "epoch": 0.4465540155686349, "percentage": 44.68, "elapsed_time": "12:50:39", "remaining_time": "15:54:08"}
{"current_steps": 295, "total_steps": 658, "loss": 2.4597, "learning_rate": 6.074852201055121e-06, "epoch": 0.448072906778052, "percentage": 44.83, "elapsed_time": "12:53:16", "remaining_time": "15:51:31"}
{"current_steps": 296, "total_steps": 658, "loss": 2.4288, "learning_rate": 6.050794251884112e-06, "epoch": 0.4495917979874691, "percentage": 44.98, "elapsed_time": "12:55:53", "remaining_time": "15:48:53"}
{"current_steps": 297, "total_steps": 658, "loss": 2.4338, "learning_rate": 6.026710824134331e-06, "epoch": 0.4511106891968863, "percentage": 45.14, "elapsed_time": "12:58:30", "remaining_time": "15:46:16"}
{"current_steps": 298, "total_steps": 658, "loss": 2.4154, "learning_rate": 6.002602501755974e-06, "epoch": 0.4526295804063034, "percentage": 45.29, "elapsed_time": "13:01:07", "remaining_time": "15:43:38"}
{"current_steps": 299, "total_steps": 658, "loss": 2.4921, "learning_rate": 5.978469869302861e-06, "epoch": 0.45414847161572053, "percentage": 45.44, "elapsed_time": "13:03:44", "remaining_time": "15:41:01"}
{"current_steps": 300, "total_steps": 658, "loss": 2.4616, "learning_rate": 5.954313511918252e-06, "epoch": 0.45566736282513765, "percentage": 45.59, "elapsed_time": "13:06:21", "remaining_time": "15:38:23"}
{"current_steps": 301, "total_steps": 658, "loss": 2.4872, "learning_rate": 5.9301340153206685e-06, "epoch": 0.45718625403455476, "percentage": 45.74, "elapsed_time": "13:08:59", "remaining_time": "15:35:46"}
{"current_steps": 302, "total_steps": 658, "loss": 2.4421, "learning_rate": 5.905931965789688e-06, "epoch": 0.4587051452439719, "percentage": 45.9, "elapsed_time": "13:11:36", "remaining_time": "15:33:08"}
{"current_steps": 303, "total_steps": 658, "loss": 2.4822, "learning_rate": 5.881707950151725e-06, "epoch": 0.46022403645338905, "percentage": 46.05, "elapsed_time": "13:14:13", "remaining_time": "15:30:31"}
{"current_steps": 304, "total_steps": 658, "loss": 2.4562, "learning_rate": 5.857462555765809e-06, "epoch": 0.46174292766280617, "percentage": 46.2, "elapsed_time": "13:16:50", "remaining_time": "15:27:54"}
{"current_steps": 305, "total_steps": 658, "loss": 2.5125, "learning_rate": 5.8331963705093375e-06, "epoch": 0.4632618188722233, "percentage": 46.35, "elapsed_time": "13:19:27", "remaining_time": "15:25:16"}
{"current_steps": 306, "total_steps": 658, "loss": 2.4263, "learning_rate": 5.808909982763825e-06, "epoch": 0.4647807100816404, "percentage": 46.5, "elapsed_time": "13:22:04", "remaining_time": "15:22:39"}
{"current_steps": 307, "total_steps": 658, "loss": 2.4522, "learning_rate": 5.784603981400632e-06, "epoch": 0.4662996012910575, "percentage": 46.66, "elapsed_time": "13:24:41", "remaining_time": "15:20:01"}
{"current_steps": 308, "total_steps": 658, "loss": 2.4475, "learning_rate": 5.760278955766695e-06, "epoch": 0.46781849250047464, "percentage": 46.81, "elapsed_time": "13:27:18", "remaining_time": "15:17:24"}
{"current_steps": 309, "total_steps": 658, "loss": 2.4194, "learning_rate": 5.735935495670229e-06, "epoch": 0.46933738370989175, "percentage": 46.96, "elapsed_time": "13:29:56", "remaining_time": "15:14:46"}
{"current_steps": 310, "total_steps": 658, "loss": 2.3649, "learning_rate": 5.711574191366427e-06, "epoch": 0.4708562749193089, "percentage": 47.11, "elapsed_time": "13:32:33", "remaining_time": "15:12:09"}
{"current_steps": 311, "total_steps": 658, "loss": 2.4821, "learning_rate": 5.687195633543151e-06, "epoch": 0.47237516612872604, "percentage": 47.26, "elapsed_time": "13:35:10", "remaining_time": "15:09:31"}
{"current_steps": 312, "total_steps": 658, "loss": 2.475, "learning_rate": 5.662800413306611e-06, "epoch": 0.47389405733814316, "percentage": 47.42, "elapsed_time": "13:37:47", "remaining_time": "15:06:54"}
{"current_steps": 313, "total_steps": 658, "loss": 2.3078, "learning_rate": 5.6383891221670275e-06, "epoch": 0.4754129485475603, "percentage": 47.57, "elapsed_time": "13:40:24", "remaining_time": "15:04:16"}
{"current_steps": 314, "total_steps": 658, "loss": 2.3925, "learning_rate": 5.613962352024293e-06, "epoch": 0.4769318397569774, "percentage": 47.72, "elapsed_time": "13:43:01", "remaining_time": "15:01:39"}
{"current_steps": 315, "total_steps": 658, "loss": 2.4178, "learning_rate": 5.589520695153618e-06, "epoch": 0.4784507309663945, "percentage": 47.87, "elapsed_time": "13:45:38", "remaining_time": "14:59:01"}
{"current_steps": 316, "total_steps": 658, "loss": 2.5059, "learning_rate": 5.5650647441911706e-06, "epoch": 0.4799696221758117, "percentage": 48.02, "elapsed_time": "13:48:15", "remaining_time": "14:56:24"}
{"current_steps": 317, "total_steps": 658, "loss": 2.5159, "learning_rate": 5.540595092119709e-06, "epoch": 0.4814885133852288, "percentage": 48.18, "elapsed_time": "13:50:52", "remaining_time": "14:53:47"}
{"current_steps": 318, "total_steps": 658, "loss": 2.334, "learning_rate": 5.516112332254203e-06, "epoch": 0.4830074045946459, "percentage": 48.33, "elapsed_time": "13:53:29", "remaining_time": "14:51:09"}
{"current_steps": 319, "total_steps": 658, "loss": 2.4316, "learning_rate": 5.491617058227443e-06, "epoch": 0.48452629580406303, "percentage": 48.48, "elapsed_time": "13:56:06", "remaining_time": "14:48:32"}
{"current_steps": 320, "total_steps": 658, "loss": 2.5104, "learning_rate": 5.46710986397565e-06, "epoch": 0.48604518701348015, "percentage": 48.63, "elapsed_time": "13:58:43", "remaining_time": "14:45:54"}
{"current_steps": 321, "total_steps": 658, "loss": 2.4709, "learning_rate": 5.442591343724081e-06, "epoch": 0.48756407822289727, "percentage": 48.78, "elapsed_time": "14:01:20", "remaining_time": "14:43:17"}
{"current_steps": 322, "total_steps": 658, "loss": 2.4407, "learning_rate": 5.418062091972604e-06, "epoch": 0.4890829694323144, "percentage": 48.94, "elapsed_time": "14:03:58", "remaining_time": "14:40:39"}
{"current_steps": 323, "total_steps": 658, "loss": 2.3959, "learning_rate": 5.393522703481303e-06, "epoch": 0.49060186064173156, "percentage": 49.09, "elapsed_time": "14:06:35", "remaining_time": "14:38:02"}
{"current_steps": 324, "total_steps": 658, "loss": 2.4172, "learning_rate": 5.36897377325604e-06, "epoch": 0.4921207518511487, "percentage": 49.24, "elapsed_time": "14:09:12", "remaining_time": "14:35:24"}
{"current_steps": 325, "total_steps": 658, "loss": 2.3965, "learning_rate": 5.344415896534039e-06, "epoch": 0.4936396430605658, "percentage": 49.39, "elapsed_time": "14:11:49", "remaining_time": "14:32:47"}
{"current_steps": 326, "total_steps": 658, "loss": 2.4589, "learning_rate": 5.319849668769449e-06, "epoch": 0.4951585342699829, "percentage": 49.54, "elapsed_time": "14:14:26", "remaining_time": "14:30:10"}
{"current_steps": 327, "total_steps": 658, "loss": 2.3558, "learning_rate": 5.295275685618905e-06, "epoch": 0.4966774254794, "percentage": 49.7, "elapsed_time": "14:17:03", "remaining_time": "14:27:32"}
{"current_steps": 328, "total_steps": 658, "loss": 2.5089, "learning_rate": 5.270694542927089e-06, "epoch": 0.49819631668881714, "percentage": 49.85, "elapsed_time": "14:19:40", "remaining_time": "14:24:55"}
{"current_steps": 329, "total_steps": 658, "loss": 2.4541, "learning_rate": 5.246106836712277e-06, "epoch": 0.4997152078982343, "percentage": 50.0, "elapsed_time": "14:22:18", "remaining_time": "14:22:18"}
{"current_steps": 330, "total_steps": 658, "loss": 2.3858, "learning_rate": 5.2215131631518945e-06, "epoch": 0.5012340991076514, "percentage": 50.15, "elapsed_time": "14:24:55", "remaining_time": "14:19:40"}
{"current_steps": 331, "total_steps": 658, "loss": 2.4189, "learning_rate": 5.196914118568054e-06, "epoch": 0.5027529903170685, "percentage": 50.3, "elapsed_time": "14:27:32", "remaining_time": "14:17:03"}
{"current_steps": 332, "total_steps": 658, "loss": 2.4426, "learning_rate": 5.1723102994130994e-06, "epoch": 0.5042718815264856, "percentage": 50.46, "elapsed_time": "14:30:09", "remaining_time": "14:14:26"}
{"current_steps": 333, "total_steps": 658, "loss": 2.4418, "learning_rate": 5.147702302255143e-06, "epoch": 0.5057907727359028, "percentage": 50.61, "elapsed_time": "14:32:46", "remaining_time": "14:11:48"}
{"current_steps": 334, "total_steps": 658, "loss": 2.3768, "learning_rate": 5.123090723763607e-06, "epoch": 0.50730966394532, "percentage": 50.76, "elapsed_time": "14:35:24", "remaining_time": "14:09:11"}
{"current_steps": 335, "total_steps": 658, "loss": 2.4267, "learning_rate": 5.098476160694741e-06, "epoch": 0.508828555154737, "percentage": 50.91, "elapsed_time": "14:38:01", "remaining_time": "14:06:34"}
{"current_steps": 336, "total_steps": 658, "loss": 2.4311, "learning_rate": 5.073859209877167e-06, "epoch": 0.5103474463641542, "percentage": 51.06, "elapsed_time": "14:40:38", "remaining_time": "14:03:56"}
{"current_steps": 337, "total_steps": 658, "loss": 2.5122, "learning_rate": 5.049240468197401e-06, "epoch": 0.5118663375735713, "percentage": 51.22, "elapsed_time": "14:43:15", "remaining_time": "14:01:19"}
{"current_steps": 338, "total_steps": 658, "loss": 2.384, "learning_rate": 5.0246205325853824e-06, "epoch": 0.5133852287829884, "percentage": 51.37, "elapsed_time": "14:45:52", "remaining_time": "13:58:42"}
{"current_steps": 339, "total_steps": 658, "loss": 2.4921, "learning_rate": 5e-06, "epoch": 0.5149041199924056, "percentage": 51.52, "elapsed_time": "14:48:29", "remaining_time": "13:56:04"}
{"current_steps": 340, "total_steps": 658, "loss": 2.4624, "learning_rate": 4.975379467414621e-06, "epoch": 0.5164230112018227, "percentage": 51.67, "elapsed_time": "14:51:06", "remaining_time": "13:53:27"}
{"current_steps": 341, "total_steps": 658, "loss": 2.402, "learning_rate": 4.950759531802602e-06, "epoch": 0.5179419024112398, "percentage": 51.82, "elapsed_time": "14:53:43", "remaining_time": "13:50:49"}
{"current_steps": 342, "total_steps": 658, "loss": 2.4924, "learning_rate": 4.926140790122835e-06, "epoch": 0.5194607936206569, "percentage": 51.98, "elapsed_time": "14:56:21", "remaining_time": "13:48:12"}
{"current_steps": 343, "total_steps": 658, "loss": 2.4247, "learning_rate": 4.90152383930526e-06, "epoch": 0.5209796848300741, "percentage": 52.13, "elapsed_time": "14:58:58", "remaining_time": "13:45:35"}
{"current_steps": 344, "total_steps": 658, "loss": 2.3653, "learning_rate": 4.876909276236395e-06, "epoch": 0.5224985760394911, "percentage": 52.28, "elapsed_time": "15:01:35", "remaining_time": "13:42:57"}
{"current_steps": 345, "total_steps": 658, "loss": 2.4583, "learning_rate": 4.852297697744857e-06, "epoch": 0.5240174672489083, "percentage": 52.43, "elapsed_time": "15:04:12", "remaining_time": "13:40:20"}
{"current_steps": 346, "total_steps": 658, "loss": 2.4109, "learning_rate": 4.827689700586902e-06, "epoch": 0.5255363584583255, "percentage": 52.58, "elapsed_time": "15:06:49", "remaining_time": "13:37:42"}
{"current_steps": 347, "total_steps": 658, "loss": 2.4321, "learning_rate": 4.803085881431949e-06, "epoch": 0.5270552496677425, "percentage": 52.74, "elapsed_time": "15:09:26", "remaining_time": "13:35:05"}
{"current_steps": 348, "total_steps": 658, "loss": 2.5462, "learning_rate": 4.778486836848107e-06, "epoch": 0.5285741408771597, "percentage": 52.89, "elapsed_time": "15:12:03", "remaining_time": "13:32:28"}
{"current_steps": 349, "total_steps": 658, "loss": 2.3965, "learning_rate": 4.7538931632877254e-06, "epoch": 0.5300930320865768, "percentage": 53.04, "elapsed_time": "15:14:41", "remaining_time": "13:29:51"}
{"current_steps": 350, "total_steps": 658, "loss": 2.4898, "learning_rate": 4.729305457072913e-06, "epoch": 0.5316119232959939, "percentage": 53.19, "elapsed_time": "15:17:18", "remaining_time": "13:27:13"}
{"current_steps": 351, "total_steps": 658, "loss": 2.4746, "learning_rate": 4.704724314381097e-06, "epoch": 0.533130814505411, "percentage": 53.34, "elapsed_time": "15:19:55", "remaining_time": "13:24:36"}
{"current_steps": 352, "total_steps": 658, "loss": 2.3629, "learning_rate": 4.680150331230552e-06, "epoch": 0.5346497057148282, "percentage": 53.5, "elapsed_time": "15:22:32", "remaining_time": "13:21:59"}
{"current_steps": 353, "total_steps": 658, "loss": 2.3738, "learning_rate": 4.6555841034659625e-06, "epoch": 0.5361685969242453, "percentage": 53.65, "elapsed_time": "15:25:09", "remaining_time": "13:19:21"}
{"current_steps": 354, "total_steps": 658, "loss": 2.4069, "learning_rate": 4.631026226743962e-06, "epoch": 0.5376874881336624, "percentage": 53.8, "elapsed_time": "15:27:46", "remaining_time": "13:16:44"}
{"current_steps": 355, "total_steps": 658, "loss": 2.344, "learning_rate": 4.606477296518698e-06, "epoch": 0.5392063793430796, "percentage": 53.95, "elapsed_time": "15:30:23", "remaining_time": "13:14:06"}
{"current_steps": 356, "total_steps": 658, "loss": 2.4081, "learning_rate": 4.581937908027397e-06, "epoch": 0.5407252705524966, "percentage": 54.1, "elapsed_time": "15:33:01", "remaining_time": "13:11:29"}
{"current_steps": 357, "total_steps": 658, "loss": 2.4161, "learning_rate": 4.55740865627592e-06, "epoch": 0.5422441617619138, "percentage": 54.26, "elapsed_time": "15:35:38", "remaining_time": "13:08:52"}
{"current_steps": 358, "total_steps": 658, "loss": 2.4184, "learning_rate": 4.532890136024351e-06, "epoch": 0.5437630529713309, "percentage": 54.41, "elapsed_time": "15:38:15", "remaining_time": "13:06:14"}
{"current_steps": 359, "total_steps": 658, "loss": 2.4924, "learning_rate": 4.508382941772558e-06, "epoch": 0.545281944180748, "percentage": 54.56, "elapsed_time": "15:40:52", "remaining_time": "13:03:37"}
{"current_steps": 360, "total_steps": 658, "loss": 2.3855, "learning_rate": 4.483887667745798e-06, "epoch": 0.5468008353901652, "percentage": 54.71, "elapsed_time": "15:43:29", "remaining_time": "13:01:00"}
{"current_steps": 361, "total_steps": 658, "loss": 2.4468, "learning_rate": 4.459404907880293e-06, "epoch": 0.5483197265995823, "percentage": 54.86, "elapsed_time": "15:46:06", "remaining_time": "12:58:22"}
{"current_steps": 362, "total_steps": 658, "loss": 2.3802, "learning_rate": 4.434935255808831e-06, "epoch": 0.5498386178089995, "percentage": 55.02, "elapsed_time": "15:48:43", "remaining_time": "12:55:45"}
{"current_steps": 363, "total_steps": 658, "loss": 2.35, "learning_rate": 4.410479304846385e-06, "epoch": 0.5513575090184165, "percentage": 55.17, "elapsed_time": "15:51:20", "remaining_time": "12:53:08"}
{"current_steps": 364, "total_steps": 658, "loss": 2.3869, "learning_rate": 4.386037647975708e-06, "epoch": 0.5528764002278337, "percentage": 55.32, "elapsed_time": "15:53:58", "remaining_time": "12:50:30"}
{"current_steps": 365, "total_steps": 658, "loss": 2.41, "learning_rate": 4.361610877832974e-06, "epoch": 0.5543952914372509, "percentage": 55.47, "elapsed_time": "15:56:35", "remaining_time": "12:47:53"}
{"current_steps": 366, "total_steps": 658, "loss": 2.3689, "learning_rate": 4.337199586693389e-06, "epoch": 0.5559141826466679, "percentage": 55.62, "elapsed_time": "15:59:12", "remaining_time": "12:45:16"}
{"current_steps": 367, "total_steps": 658, "loss": 2.4504, "learning_rate": 4.312804366456851e-06, "epoch": 0.5574330738560851, "percentage": 55.78, "elapsed_time": "16:01:49", "remaining_time": "12:42:38"}
{"current_steps": 368, "total_steps": 658, "loss": 2.4652, "learning_rate": 4.2884258086335755e-06, "epoch": 0.5589519650655022, "percentage": 55.93, "elapsed_time": "16:04:26", "remaining_time": "12:40:01"}
{"current_steps": 369, "total_steps": 658, "loss": 2.4019, "learning_rate": 4.2640645043297715e-06, "epoch": 0.5604708562749193, "percentage": 56.08, "elapsed_time": "16:07:03", "remaining_time": "12:37:24"}
{"current_steps": 370, "total_steps": 658, "loss": 2.306, "learning_rate": 4.239721044233306e-06, "epoch": 0.5619897474843364, "percentage": 56.23, "elapsed_time": "16:09:41", "remaining_time": "12:34:46"}
{"current_steps": 371, "total_steps": 658, "loss": 2.3859, "learning_rate": 4.215396018599369e-06, "epoch": 0.5635086386937536, "percentage": 56.38, "elapsed_time": "16:12:18", "remaining_time": "12:32:09"}
{"current_steps": 372, "total_steps": 658, "loss": 2.3734, "learning_rate": 4.191090017236177e-06, "epoch": 0.5650275299031707, "percentage": 56.53, "elapsed_time": "16:14:55", "remaining_time": "12:29:32"}
{"current_steps": 373, "total_steps": 658, "loss": 2.4194, "learning_rate": 4.166803629490664e-06, "epoch": 0.5665464211125878, "percentage": 56.69, "elapsed_time": "16:17:32", "remaining_time": "12:26:54"}
{"current_steps": 374, "total_steps": 658, "loss": 2.4815, "learning_rate": 4.142537444234192e-06, "epoch": 0.568065312322005, "percentage": 56.84, "elapsed_time": "16:20:09", "remaining_time": "12:24:17"}
{"current_steps": 375, "total_steps": 658, "loss": 2.4493, "learning_rate": 4.118292049848277e-06, "epoch": 0.569584203531422, "percentage": 56.99, "elapsed_time": "16:22:46", "remaining_time": "12:21:40"}
{"current_steps": 376, "total_steps": 658, "loss": 2.4458, "learning_rate": 4.094068034210313e-06, "epoch": 0.5711030947408392, "percentage": 57.14, "elapsed_time": "16:25:23", "remaining_time": "12:19:02"}
{"current_steps": 377, "total_steps": 658, "loss": 2.4004, "learning_rate": 4.069865984679332e-06, "epoch": 0.5726219859502563, "percentage": 57.29, "elapsed_time": "16:28:00", "remaining_time": "12:16:25"}
{"current_steps": 378, "total_steps": 658, "loss": 2.4643, "learning_rate": 4.045686488081748e-06, "epoch": 0.5741408771596734, "percentage": 57.45, "elapsed_time": "16:30:37", "remaining_time": "12:13:48"}
{"current_steps": 379, "total_steps": 658, "loss": 2.4709, "learning_rate": 4.021530130697141e-06, "epoch": 0.5756597683690906, "percentage": 57.6, "elapsed_time": "16:33:15", "remaining_time": "12:11:10"}
{"current_steps": 380, "total_steps": 658, "loss": 2.4853, "learning_rate": 3.997397498244028e-06, "epoch": 0.5771786595785077, "percentage": 57.75, "elapsed_time": "16:35:52", "remaining_time": "12:08:33"}
{"current_steps": 381, "total_steps": 658, "loss": 2.5029, "learning_rate": 3.97328917586567e-06, "epoch": 0.5786975507879248, "percentage": 57.9, "elapsed_time": "16:38:29", "remaining_time": "12:05:56"}
{"current_steps": 382, "total_steps": 658, "loss": 2.4853, "learning_rate": 3.9492057481158905e-06, "epoch": 0.5802164419973419, "percentage": 58.05, "elapsed_time": "16:41:06", "remaining_time": "12:03:18"}
{"current_steps": 383, "total_steps": 658, "loss": 2.4058, "learning_rate": 3.92514779894488e-06, "epoch": 0.5817353332067591, "percentage": 58.21, "elapsed_time": "16:43:43", "remaining_time": "12:00:41"}
{"current_steps": 384, "total_steps": 658, "loss": 2.4426, "learning_rate": 3.901115911685063e-06, "epoch": 0.5832542244161761, "percentage": 58.36, "elapsed_time": "16:46:20", "remaining_time": "11:58:04"}
{"current_steps": 385, "total_steps": 658, "loss": 2.4151, "learning_rate": 3.877110669036932e-06, "epoch": 0.5847731156255933, "percentage": 58.51, "elapsed_time": "16:48:57", "remaining_time": "11:55:26"}
{"current_steps": 386, "total_steps": 658, "loss": 2.4061, "learning_rate": 3.853132653054936e-06, "epoch": 0.5862920068350105, "percentage": 58.66, "elapsed_time": "16:51:34", "remaining_time": "11:52:49"}
{"current_steps": 387, "total_steps": 658, "loss": 2.4192, "learning_rate": 3.829182445133356e-06, "epoch": 0.5878108980444275, "percentage": 58.81, "elapsed_time": "16:54:12", "remaining_time": "11:50:12"}
{"current_steps": 388, "total_steps": 658, "loss": 2.3988, "learning_rate": 3.8052606259922097e-06, "epoch": 0.5893297892538447, "percentage": 58.97, "elapsed_time": "16:56:49", "remaining_time": "11:47:34"}
{"current_steps": 389, "total_steps": 658, "loss": 2.4392, "learning_rate": 3.7813677756631773e-06, "epoch": 0.5908486804632618, "percentage": 59.12, "elapsed_time": "16:59:26", "remaining_time": "11:44:57"}
{"current_steps": 390, "total_steps": 658, "loss": 2.3739, "learning_rate": 3.75750447347553e-06, "epoch": 0.592367571672679, "percentage": 59.27, "elapsed_time": "17:02:03", "remaining_time": "11:42:19"}
{"current_steps": 391, "total_steps": 658, "loss": 2.4588, "learning_rate": 3.7336712980420897e-06, "epoch": 0.5938864628820961, "percentage": 59.42, "elapsed_time": "17:04:40", "remaining_time": "11:39:42"}
{"current_steps": 392, "total_steps": 658, "loss": 2.4266, "learning_rate": 3.7098688272451893e-06, "epoch": 0.5954053540915132, "percentage": 59.57, "elapsed_time": "17:07:17", "remaining_time": "11:37:05"}
{"current_steps": 393, "total_steps": 658, "loss": 2.3617, "learning_rate": 3.6860976382226747e-06, "epoch": 0.5969242453009304, "percentage": 59.73, "elapsed_time": "17:09:54", "remaining_time": "11:34:27"}
{"current_steps": 394, "total_steps": 658, "loss": 2.4095, "learning_rate": 3.662358307353897e-06, "epoch": 0.5984431365103474, "percentage": 59.88, "elapsed_time": "17:12:31", "remaining_time": "11:31:50"}
{"current_steps": 395, "total_steps": 658, "loss": 2.5, "learning_rate": 3.638651410245746e-06, "epoch": 0.5999620277197646, "percentage": 60.03, "elapsed_time": "17:15:08", "remaining_time": "11:29:13"}
{"current_steps": 396, "total_steps": 658, "loss": 2.4601, "learning_rate": 3.6149775217186954e-06, "epoch": 0.6014809189291817, "percentage": 60.18, "elapsed_time": "17:17:45", "remaining_time": "11:26:35"}
{"current_steps": 397, "total_steps": 658, "loss": 2.4496, "learning_rate": 3.5913372157928515e-06, "epoch": 0.6029998101385988, "percentage": 60.33, "elapsed_time": "17:20:22", "remaining_time": "11:23:58"}
{"current_steps": 398, "total_steps": 658, "loss": 2.367, "learning_rate": 3.5677310656740537e-06, "epoch": 0.604518701348016, "percentage": 60.49, "elapsed_time": "17:22:59", "remaining_time": "11:21:20"}
{"current_steps": 399, "total_steps": 658, "loss": 2.4182, "learning_rate": 3.5441596437399596e-06, "epoch": 0.6060375925574331, "percentage": 60.64, "elapsed_time": "17:25:36", "remaining_time": "11:18:43"}
{"current_steps": 400, "total_steps": 658, "loss": 2.4485, "learning_rate": 3.5206235215261785e-06, "epoch": 0.6075564837668502, "percentage": 60.79, "elapsed_time": "17:28:13", "remaining_time": "11:16:06"}
{"current_steps": 401, "total_steps": 658, "loss": 2.3709, "learning_rate": 3.4971232697124046e-06, "epoch": 0.6090753749762673, "percentage": 60.94, "elapsed_time": "17:31:31", "remaining_time": "11:13:55"}
{"current_steps": 402, "total_steps": 658, "loss": 2.4012, "learning_rate": 3.4736594581085837e-06, "epoch": 0.6105942661856845, "percentage": 61.09, "elapsed_time": "17:34:09", "remaining_time": "11:11:18"}
{"current_steps": 403, "total_steps": 658, "loss": 2.484, "learning_rate": 3.4502326556411e-06, "epoch": 0.6121131573951015, "percentage": 61.25, "elapsed_time": "17:36:46", "remaining_time": "11:08:40"}
{"current_steps": 404, "total_steps": 658, "loss": 2.3686, "learning_rate": 3.4268434303389747e-06, "epoch": 0.6136320486045187, "percentage": 61.4, "elapsed_time": "17:39:23", "remaining_time": "11:06:03"}
{"current_steps": 405, "total_steps": 658, "loss": 2.4893, "learning_rate": 3.403492349320101e-06, "epoch": 0.6151509398139359, "percentage": 61.55, "elapsed_time": "17:42:00", "remaining_time": "11:03:25"}
{"current_steps": 406, "total_steps": 658, "loss": 2.4911, "learning_rate": 3.380179978777482e-06, "epoch": 0.6166698310233529, "percentage": 61.7, "elapsed_time": "17:44:38", "remaining_time": "11:00:48"}
{"current_steps": 407, "total_steps": 658, "loss": 2.4202, "learning_rate": 3.356906883965516e-06, "epoch": 0.6181887222327701, "percentage": 61.85, "elapsed_time": "17:47:15", "remaining_time": "10:58:10"}
{"current_steps": 408, "total_steps": 658, "loss": 2.4613, "learning_rate": 3.33367362918628e-06, "epoch": 0.6197076134421872, "percentage": 62.01, "elapsed_time": "17:49:52", "remaining_time": "10:55:33"}
{"current_steps": 409, "total_steps": 658, "loss": 2.4543, "learning_rate": 3.3104807777758487e-06, "epoch": 0.6212265046516043, "percentage": 62.16, "elapsed_time": "17:52:29", "remaining_time": "10:52:55"}
{"current_steps": 410, "total_steps": 658, "loss": 2.4337, "learning_rate": 3.2873288920906436e-06, "epoch": 0.6227453958610214, "percentage": 62.31, "elapsed_time": "17:55:06", "remaining_time": "10:50:18"}
{"current_steps": 411, "total_steps": 658, "loss": 2.5019, "learning_rate": 3.2642185334937853e-06, "epoch": 0.6242642870704386, "percentage": 62.46, "elapsed_time": "17:57:43", "remaining_time": "10:47:41"}
{"current_steps": 412, "total_steps": 658, "loss": 2.4375, "learning_rate": 3.2411502623414925e-06, "epoch": 0.6257831782798557, "percentage": 62.61, "elapsed_time": "18:00:20", "remaining_time": "10:45:03"}
{"current_steps": 413, "total_steps": 658, "loss": 2.4859, "learning_rate": 3.2181246379694886e-06, "epoch": 0.6273020694892728, "percentage": 62.77, "elapsed_time": "18:02:57", "remaining_time": "10:42:26"}
{"current_steps": 414, "total_steps": 658, "loss": 2.444, "learning_rate": 3.1951422186794447e-06, "epoch": 0.62882096069869, "percentage": 62.92, "elapsed_time": "18:05:34", "remaining_time": "10:39:48"}
{"current_steps": 415, "total_steps": 658, "loss": 2.411, "learning_rate": 3.1722035617254333e-06, "epoch": 0.630339851908107, "percentage": 63.07, "elapsed_time": "18:08:11", "remaining_time": "10:37:11"}
{"current_steps": 416, "total_steps": 658, "loss": 2.3643, "learning_rate": 3.149309223300428e-06, "epoch": 0.6318587431175242, "percentage": 63.22, "elapsed_time": "18:10:48", "remaining_time": "10:34:33"}
{"current_steps": 417, "total_steps": 658, "loss": 2.4063, "learning_rate": 3.126459758522813e-06, "epoch": 0.6333776343269414, "percentage": 63.37, "elapsed_time": "18:13:26", "remaining_time": "10:31:56"}
{"current_steps": 418, "total_steps": 658, "loss": 2.4543, "learning_rate": 3.103655721422917e-06, "epoch": 0.6348965255363584, "percentage": 63.53, "elapsed_time": "18:16:03", "remaining_time": "10:29:18"}
{"current_steps": 419, "total_steps": 658, "loss": 2.392, "learning_rate": 3.080897664929592e-06, "epoch": 0.6364154167457756, "percentage": 63.68, "elapsed_time": "18:18:40", "remaining_time": "10:26:41"}
{"current_steps": 420, "total_steps": 658, "loss": 2.4415, "learning_rate": 3.0581861408567907e-06, "epoch": 0.6379343079551927, "percentage": 63.83, "elapsed_time": "18:21:17", "remaining_time": "10:24:03"}
{"current_steps": 421, "total_steps": 658, "loss": 2.414, "learning_rate": 3.035521699890206e-06, "epoch": 0.6394531991646099, "percentage": 63.98, "elapsed_time": "18:23:54", "remaining_time": "10:21:26"}
{"current_steps": 422, "total_steps": 658, "loss": 2.48, "learning_rate": 3.0129048915739013e-06, "epoch": 0.6409720903740269, "percentage": 64.13, "elapsed_time": "18:26:31", "remaining_time": "10:18:48"}
{"current_steps": 423, "total_steps": 658, "loss": 2.4107, "learning_rate": 2.9903362642969903e-06, "epoch": 0.6424909815834441, "percentage": 64.29, "elapsed_time": "18:29:08", "remaining_time": "10:16:11"}
{"current_steps": 424, "total_steps": 658, "loss": 2.413, "learning_rate": 2.967816365280351e-06, "epoch": 0.6440098727928613, "percentage": 64.44, "elapsed_time": "18:31:45", "remaining_time": "10:13:33"}
{"current_steps": 425, "total_steps": 658, "loss": 2.4418, "learning_rate": 2.94534574056334e-06, "epoch": 0.6455287640022783, "percentage": 64.59, "elapsed_time": "18:34:22", "remaining_time": "10:10:56"}
{"current_steps": 426, "total_steps": 658, "loss": 2.4867, "learning_rate": 2.9229249349905686e-06, "epoch": 0.6470476552116955, "percentage": 64.74, "elapsed_time": "18:36:59", "remaining_time": "10:08:18"}
{"current_steps": 427, "total_steps": 658, "loss": 2.4426, "learning_rate": 2.9005544921986774e-06, "epoch": 0.6485665464211126, "percentage": 64.89, "elapsed_time": "18:39:36", "remaining_time": "10:05:41"}
{"current_steps": 428, "total_steps": 658, "loss": 2.4602, "learning_rate": 2.8782349546031673e-06, "epoch": 0.6500854376305297, "percentage": 65.05, "elapsed_time": "18:42:13", "remaining_time": "10:03:04"}
{"current_steps": 429, "total_steps": 658, "loss": 2.382, "learning_rate": 2.8559668633852433e-06, "epoch": 0.6516043288399468, "percentage": 65.2, "elapsed_time": "18:44:50", "remaining_time": "10:00:26"}
{"current_steps": 430, "total_steps": 658, "loss": 2.4133, "learning_rate": 2.8337507584786826e-06, "epoch": 0.653123220049364, "percentage": 65.35, "elapsed_time": "18:47:27", "remaining_time": "9:57:49"}
{"current_steps": 431, "total_steps": 658, "loss": 2.4165, "learning_rate": 2.811587178556764e-06, "epoch": 0.6546421112587811, "percentage": 65.5, "elapsed_time": "18:50:04", "remaining_time": "9:55:11"}
{"current_steps": 432, "total_steps": 658, "loss": 2.4604, "learning_rate": 2.789476661019186e-06, "epoch": 0.6561610024681982, "percentage": 65.65, "elapsed_time": "18:52:42", "remaining_time": "9:52:34"}
{"current_steps": 433, "total_steps": 658, "loss": 2.4372, "learning_rate": 2.7674197419790493e-06, "epoch": 0.6576798936776154, "percentage": 65.81, "elapsed_time": "18:55:19", "remaining_time": "9:49:56"}
{"current_steps": 434, "total_steps": 658, "loss": 2.4066, "learning_rate": 2.7454169562498503e-06, "epoch": 0.6591987848870324, "percentage": 65.96, "elapsed_time": "18:57:56", "remaining_time": "9:47:19"}
{"current_steps": 435, "total_steps": 658, "loss": 2.42, "learning_rate": 2.723468837332517e-06, "epoch": 0.6607176760964496, "percentage": 66.11, "elapsed_time": "19:00:33", "remaining_time": "9:44:41"}
{"current_steps": 436, "total_steps": 658, "loss": 2.3347, "learning_rate": 2.7015759174024756e-06, "epoch": 0.6622365673058667, "percentage": 66.26, "elapsed_time": "19:03:10", "remaining_time": "9:42:04"}
{"current_steps": 437, "total_steps": 658, "loss": 2.4628, "learning_rate": 2.6797387272967414e-06, "epoch": 0.6637554585152838, "percentage": 66.41, "elapsed_time": "19:05:47", "remaining_time": "9:39:26"}
{"current_steps": 438, "total_steps": 658, "loss": 2.4077, "learning_rate": 2.65795779650105e-06, "epoch": 0.665274349724701, "percentage": 66.57, "elapsed_time": "19:08:24", "remaining_time": "9:36:49"}
{"current_steps": 439, "total_steps": 658, "loss": 2.4538, "learning_rate": 2.63623365313702e-06, "epoch": 0.6667932409341181, "percentage": 66.72, "elapsed_time": "19:11:01", "remaining_time": "9:34:11"}
{"current_steps": 440, "total_steps": 658, "loss": 2.4316, "learning_rate": 2.614566823949348e-06, "epoch": 0.6683121321435352, "percentage": 66.87, "elapsed_time": "19:13:38", "remaining_time": "9:31:34"}
{"current_steps": 441, "total_steps": 658, "loss": 2.3748, "learning_rate": 2.592957834293033e-06, "epoch": 0.6698310233529523, "percentage": 67.02, "elapsed_time": "19:16:15", "remaining_time": "9:28:56"}
{"current_steps": 442, "total_steps": 658, "loss": 2.4384, "learning_rate": 2.5714072081206407e-06, "epoch": 0.6713499145623695, "percentage": 67.17, "elapsed_time": "19:18:52", "remaining_time": "9:26:19"}
{"current_steps": 443, "total_steps": 658, "loss": 2.4107, "learning_rate": 2.5499154679696014e-06, "epoch": 0.6728688057717866, "percentage": 67.33, "elapsed_time": "19:21:29", "remaining_time": "9:23:42"}
{"current_steps": 444, "total_steps": 658, "loss": 2.4876, "learning_rate": 2.528483134949535e-06, "epoch": 0.6743876969812037, "percentage": 67.48, "elapsed_time": "19:24:06", "remaining_time": "9:21:04"}
{"current_steps": 445, "total_steps": 658, "loss": 2.4413, "learning_rate": 2.50711072872962e-06, "epoch": 0.6759065881906209, "percentage": 67.63, "elapsed_time": "19:26:43", "remaining_time": "9:18:27"}
{"current_steps": 446, "total_steps": 658, "loss": 2.4378, "learning_rate": 2.4857987675259887e-06, "epoch": 0.6774254794000379, "percentage": 67.78, "elapsed_time": "19:29:20", "remaining_time": "9:15:49"}
{"current_steps": 447, "total_steps": 658, "loss": 2.4039, "learning_rate": 2.4645477680891734e-06, "epoch": 0.6789443706094551, "percentage": 67.93, "elapsed_time": "19:31:57", "remaining_time": "9:13:12"}
{"current_steps": 448, "total_steps": 658, "loss": 2.5088, "learning_rate": 2.4433582456915556e-06, "epoch": 0.6804632618188722, "percentage": 68.09, "elapsed_time": "19:34:33", "remaining_time": "9:10:34"}
{"current_steps": 449, "total_steps": 658, "loss": 2.3984, "learning_rate": 2.422230714114891e-06, "epoch": 0.6819821530282894, "percentage": 68.24, "elapsed_time": "19:37:10", "remaining_time": "9:07:57"}
{"current_steps": 450, "total_steps": 658, "loss": 2.3982, "learning_rate": 2.4011656856378513e-06, "epoch": 0.6835010442377065, "percentage": 68.39, "elapsed_time": "19:39:47", "remaining_time": "9:05:19"}
{"current_steps": 451, "total_steps": 658, "loss": 2.4803, "learning_rate": 2.3801636710235836e-06, "epoch": 0.6850199354471236, "percentage": 68.54, "elapsed_time": "19:42:24", "remaining_time": "9:02:42"}
{"current_steps": 452, "total_steps": 658, "loss": 2.4261, "learning_rate": 2.3592251795073564e-06, "epoch": 0.6865388266565408, "percentage": 68.69, "elapsed_time": "19:45:01", "remaining_time": "9:00:04"}
{"current_steps": 453, "total_steps": 658, "loss": 2.4503, "learning_rate": 2.338350718784177e-06, "epoch": 0.6880577178659578, "percentage": 68.84, "elapsed_time": "19:47:37", "remaining_time": "8:57:26"}
{"current_steps": 454, "total_steps": 658, "loss": 2.4356, "learning_rate": 2.3175407949965167e-06, "epoch": 0.689576609075375, "percentage": 69.0, "elapsed_time": "19:50:14", "remaining_time": "8:54:49"}
{"current_steps": 455, "total_steps": 658, "loss": 2.4435, "learning_rate": 2.296795912722014e-06, "epoch": 0.691095500284792, "percentage": 69.15, "elapsed_time": "19:52:51", "remaining_time": "8:52:11"}
{"current_steps": 456, "total_steps": 658, "loss": 2.3984, "learning_rate": 2.2761165749612417e-06, "epoch": 0.6926143914942092, "percentage": 69.3, "elapsed_time": "19:55:28", "remaining_time": "8:49:34"}
{"current_steps": 457, "total_steps": 658, "loss": 2.4074, "learning_rate": 2.25550328312553e-06, "epoch": 0.6941332827036264, "percentage": 69.45, "elapsed_time": "19:58:05", "remaining_time": "8:46:57"}
{"current_steps": 458, "total_steps": 658, "loss": 2.3839, "learning_rate": 2.2349565370247837e-06, "epoch": 0.6956521739130435, "percentage": 69.6, "elapsed_time": "20:00:42", "remaining_time": "8:44:19"}
{"current_steps": 459, "total_steps": 658, "loss": 2.4342, "learning_rate": 2.214476834855382e-06, "epoch": 0.6971710651224606, "percentage": 69.76, "elapsed_time": "20:03:19", "remaining_time": "8:41:42"}
{"current_steps": 460, "total_steps": 658, "loss": 2.4411, "learning_rate": 2.1940646731880887e-06, "epoch": 0.6986899563318777, "percentage": 69.91, "elapsed_time": "20:05:56", "remaining_time": "8:39:04"}
{"current_steps": 461, "total_steps": 658, "loss": 2.4685, "learning_rate": 2.173720546956015e-06, "epoch": 0.7002088475412949, "percentage": 70.06, "elapsed_time": "20:08:33", "remaining_time": "8:36:27"}
{"current_steps": 462, "total_steps": 658, "loss": 2.4395, "learning_rate": 2.1534449494426203e-06, "epoch": 0.7017277387507119, "percentage": 70.21, "elapsed_time": "20:11:10", "remaining_time": "8:33:49"}
{"current_steps": 463, "total_steps": 658, "loss": 2.3932, "learning_rate": 2.1332383722697483e-06, "epoch": 0.7032466299601291, "percentage": 70.36, "elapsed_time": "20:13:47", "remaining_time": "8:31:12"}
{"current_steps": 464, "total_steps": 658, "loss": 2.4367, "learning_rate": 2.1131013053857097e-06, "epoch": 0.7047655211695463, "percentage": 70.52, "elapsed_time": "20:16:24", "remaining_time": "8:28:35"}
{"current_steps": 465, "total_steps": 658, "loss": 2.4824, "learning_rate": 2.0930342370534013e-06, "epoch": 0.7062844123789633, "percentage": 70.67, "elapsed_time": "20:19:01", "remaining_time": "8:25:57"}
{"current_steps": 466, "total_steps": 658, "loss": 2.4703, "learning_rate": 2.073037653838466e-06, "epoch": 0.7078033035883805, "percentage": 70.82, "elapsed_time": "20:21:38", "remaining_time": "8:23:20"}
{"current_steps": 467, "total_steps": 658, "loss": 2.3708, "learning_rate": 2.053112040597495e-06, "epoch": 0.7093221947977976, "percentage": 70.97, "elapsed_time": "20:24:15", "remaining_time": "8:20:42"}
{"current_steps": 468, "total_steps": 658, "loss": 2.3477, "learning_rate": 2.0332578804662783e-06, "epoch": 0.7108410860072147, "percentage": 71.12, "elapsed_time": "20:26:52", "remaining_time": "8:18:05"}
{"current_steps": 469, "total_steps": 658, "loss": 2.3872, "learning_rate": 2.013475654848076e-06, "epoch": 0.7123599772166319, "percentage": 71.28, "elapsed_time": "20:29:29", "remaining_time": "8:15:28"}
{"current_steps": 470, "total_steps": 658, "loss": 2.4375, "learning_rate": 1.99376584340196e-06, "epoch": 0.713878868426049, "percentage": 71.43, "elapsed_time": "20:32:06", "remaining_time": "8:12:50"}
{"current_steps": 471, "total_steps": 658, "loss": 2.4043, "learning_rate": 1.9741289240311757e-06, "epoch": 0.7153977596354661, "percentage": 71.58, "elapsed_time": "20:34:43", "remaining_time": "8:10:13"}
{"current_steps": 472, "total_steps": 658, "loss": 2.3834, "learning_rate": 1.954565372871554e-06, "epoch": 0.7169166508448832, "percentage": 71.73, "elapsed_time": "20:37:20", "remaining_time": "8:07:35"}
{"current_steps": 473, "total_steps": 658, "loss": 2.356, "learning_rate": 1.935075664279978e-06, "epoch": 0.7184355420543004, "percentage": 71.88, "elapsed_time": "20:39:57", "remaining_time": "8:04:58"}
{"current_steps": 474, "total_steps": 658, "loss": 2.4272, "learning_rate": 1.9156602708228584e-06, "epoch": 0.7199544332637174, "percentage": 72.04, "elapsed_time": "20:42:34", "remaining_time": "8:02:21"}
{"current_steps": 475, "total_steps": 658, "loss": 2.4413, "learning_rate": 1.8963196632647008e-06, "epoch": 0.7214733244731346, "percentage": 72.19, "elapsed_time": "20:45:11", "remaining_time": "7:59:43"}
{"current_steps": 476, "total_steps": 658, "loss": 2.4814, "learning_rate": 1.8770543105566752e-06, "epoch": 0.7229922156825518, "percentage": 72.34, "elapsed_time": "20:47:48", "remaining_time": "7:57:06"}
{"current_steps": 477, "total_steps": 658, "loss": 2.3858, "learning_rate": 1.8578646798252432e-06, "epoch": 0.7245111068919688, "percentage": 72.49, "elapsed_time": "20:50:25", "remaining_time": "7:54:28"}
{"current_steps": 478, "total_steps": 658, "loss": 2.4597, "learning_rate": 1.8387512363608496e-06, "epoch": 0.726029998101386, "percentage": 72.64, "elapsed_time": "20:53:02", "remaining_time": "7:51:51"}
{"current_steps": 479, "total_steps": 658, "loss": 2.42, "learning_rate": 1.8197144436066167e-06, "epoch": 0.7275488893108031, "percentage": 72.8, "elapsed_time": "20:55:39", "remaining_time": "7:49:13"}
{"current_steps": 480, "total_steps": 658, "loss": 2.4812, "learning_rate": 1.8007547631471289e-06, "epoch": 0.7290677805202203, "percentage": 72.95, "elapsed_time": "20:58:15", "remaining_time": "7:46:36"}
{"current_steps": 481, "total_steps": 658, "loss": 2.3902, "learning_rate": 1.781872654697226e-06, "epoch": 0.7305866717296373, "percentage": 73.1, "elapsed_time": "21:00:52", "remaining_time": "7:43:58"}
{"current_steps": 482, "total_steps": 658, "loss": 2.4603, "learning_rate": 1.7630685760908623e-06, "epoch": 0.7321055629390545, "percentage": 73.25, "elapsed_time": "21:03:29", "remaining_time": "7:41:21"}
{"current_steps": 483, "total_steps": 658, "loss": 2.4275, "learning_rate": 1.7443429832700038e-06, "epoch": 0.7336244541484717, "percentage": 73.4, "elapsed_time": "21:06:06", "remaining_time": "7:38:44"}
{"current_steps": 484, "total_steps": 658, "loss": 2.4271, "learning_rate": 1.7256963302735752e-06, "epoch": 0.7351433453578887, "percentage": 73.56, "elapsed_time": "21:08:43", "remaining_time": "7:36:06"}
{"current_steps": 485, "total_steps": 658, "loss": 2.3497, "learning_rate": 1.7071290692264492e-06, "epoch": 0.7366622365673059, "percentage": 73.71, "elapsed_time": "21:11:20", "remaining_time": "7:33:29"}
{"current_steps": 486, "total_steps": 658, "loss": 2.4147, "learning_rate": 1.6886416503284835e-06, "epoch": 0.738181127776723, "percentage": 73.86, "elapsed_time": "21:13:57", "remaining_time": "7:30:51"}
{"current_steps": 487, "total_steps": 658, "loss": 2.4918, "learning_rate": 1.6702345218436066e-06, "epoch": 0.7397000189861401, "percentage": 74.01, "elapsed_time": "21:16:34", "remaining_time": "7:28:14"}
{"current_steps": 488, "total_steps": 658, "loss": 2.4301, "learning_rate": 1.6519081300889472e-06, "epoch": 0.7412189101955572, "percentage": 74.16, "elapsed_time": "21:19:11", "remaining_time": "7:25:37"}
{"current_steps": 489, "total_steps": 658, "loss": 2.4588, "learning_rate": 1.6336629194240118e-06, "epoch": 0.7427378014049744, "percentage": 74.32, "elapsed_time": "21:21:48", "remaining_time": "7:22:59"}
{"current_steps": 490, "total_steps": 658, "loss": 2.3858, "learning_rate": 1.6154993322399114e-06, "epoch": 0.7442566926143915, "percentage": 74.47, "elapsed_time": "21:24:25", "remaining_time": "7:20:22"}
{"current_steps": 491, "total_steps": 658, "loss": 2.4636, "learning_rate": 1.5974178089486364e-06, "epoch": 0.7457755838238086, "percentage": 74.62, "elapsed_time": "21:27:02", "remaining_time": "7:17:44"}
{"current_steps": 492, "total_steps": 658, "loss": 2.3879, "learning_rate": 1.5794187879723755e-06, "epoch": 0.7472944750332258, "percentage": 74.77, "elapsed_time": "21:29:39", "remaining_time": "7:15:07"}
{"current_steps": 493, "total_steps": 658, "loss": 2.4565, "learning_rate": 1.561502705732883e-06, "epoch": 0.7488133662426428, "percentage": 74.92, "elapsed_time": "21:32:16", "remaining_time": "7:12:30"}
{"current_steps": 494, "total_steps": 658, "loss": 2.3762, "learning_rate": 1.543669996640908e-06, "epoch": 0.75033225745206, "percentage": 75.08, "elapsed_time": "21:34:53", "remaining_time": "7:09:52"}
{"current_steps": 495, "total_steps": 658, "loss": 2.4102, "learning_rate": 1.5259210930856423e-06, "epoch": 0.7518511486614772, "percentage": 75.23, "elapsed_time": "21:37:30", "remaining_time": "7:07:15"}
{"current_steps": 496, "total_steps": 658, "loss": 2.4662, "learning_rate": 1.5082564254242583e-06, "epoch": 0.7533700398708942, "percentage": 75.38, "elapsed_time": "21:40:07", "remaining_time": "7:04:38"}
{"current_steps": 497, "total_steps": 658, "loss": 2.3815, "learning_rate": 1.4906764219714537e-06, "epoch": 0.7548889310803114, "percentage": 75.53, "elapsed_time": "21:42:44", "remaining_time": "7:02:00"}
{"current_steps": 498, "total_steps": 658, "loss": 2.3936, "learning_rate": 1.4731815089890795e-06, "epoch": 0.7564078222897285, "percentage": 75.68, "elapsed_time": "21:45:21", "remaining_time": "6:59:23"}
{"current_steps": 499, "total_steps": 658, "loss": 2.4351, "learning_rate": 1.455772110675804e-06, "epoch": 0.7579267134991456, "percentage": 75.84, "elapsed_time": "21:47:58", "remaining_time": "6:56:46"}
{"current_steps": 500, "total_steps": 658, "loss": 2.4531, "learning_rate": 1.438448649156815e-06, "epoch": 0.7594456047085627, "percentage": 75.99, "elapsed_time": "21:50:35", "remaining_time": "6:54:08"}
{"current_steps": 501, "total_steps": 658, "loss": 2.3204, "learning_rate": 1.4212115444736024e-06, "epoch": 0.7609644959179799, "percentage": 76.14, "elapsed_time": "21:53:12", "remaining_time": "6:51:31"}
{"current_steps": 502, "total_steps": 658, "loss": 2.4785, "learning_rate": 1.4040612145737608e-06, "epoch": 0.762483387127397, "percentage": 76.29, "elapsed_time": "21:55:49", "remaining_time": "6:48:54"}
{"current_steps": 503, "total_steps": 658, "loss": 2.4758, "learning_rate": 1.3869980753008537e-06, "epoch": 0.7640022783368141, "percentage": 76.44, "elapsed_time": "21:58:26", "remaining_time": "6:46:16"}
{"current_steps": 504, "total_steps": 658, "loss": 2.3726, "learning_rate": 1.370022540384347e-06, "epoch": 0.7655211695462313, "percentage": 76.6, "elapsed_time": "22:01:03", "remaining_time": "6:43:39"}
{"current_steps": 505, "total_steps": 658, "loss": 2.4188, "learning_rate": 1.353135021429554e-06, "epoch": 0.7670400607556483, "percentage": 76.75, "elapsed_time": "22:03:40", "remaining_time": "6:41:02"}
{"current_steps": 506, "total_steps": 658, "loss": 2.3275, "learning_rate": 1.3363359279076776e-06, "epoch": 0.7685589519650655, "percentage": 76.9, "elapsed_time": "22:06:17", "remaining_time": "6:38:24"}
{"current_steps": 507, "total_steps": 658, "loss": 2.4474, "learning_rate": 1.3196256671458663e-06, "epoch": 0.7700778431744826, "percentage": 77.05, "elapsed_time": "22:08:54", "remaining_time": "6:35:47"}
{"current_steps": 508, "total_steps": 658, "loss": 2.3754, "learning_rate": 1.3030046443173445e-06, "epoch": 0.7715967343838998, "percentage": 77.2, "elapsed_time": "22:11:31", "remaining_time": "6:33:10"}
{"current_steps": 509, "total_steps": 658, "loss": 2.4502, "learning_rate": 1.2864732624315867e-06, "epoch": 0.7731156255933169, "percentage": 77.36, "elapsed_time": "22:14:08", "remaining_time": "6:30:32"}
{"current_steps": 510, "total_steps": 658, "loss": 2.4717, "learning_rate": 1.270031922324546e-06, "epoch": 0.774634516802734, "percentage": 77.51, "elapsed_time": "22:16:45", "remaining_time": "6:27:55"}
{"current_steps": 511, "total_steps": 658, "loss": 2.4426, "learning_rate": 1.2536810226489354e-06, "epoch": 0.7761534080121512, "percentage": 77.66, "elapsed_time": "22:19:21", "remaining_time": "6:25:17"}
{"current_steps": 512, "total_steps": 658, "loss": 2.3612, "learning_rate": 1.237420959864561e-06, "epoch": 0.7776722992215682, "percentage": 77.81, "elapsed_time": "22:21:58", "remaining_time": "6:22:40"}
{"current_steps": 513, "total_steps": 658, "loss": 2.4509, "learning_rate": 1.2212521282287093e-06, "epoch": 0.7791911904309854, "percentage": 77.96, "elapsed_time": "22:24:35", "remaining_time": "6:20:03"}
{"current_steps": 514, "total_steps": 658, "loss": 2.4396, "learning_rate": 1.2051749197865875e-06, "epoch": 0.7807100816404025, "percentage": 78.12, "elapsed_time": "22:27:12", "remaining_time": "6:17:25"}
{"current_steps": 515, "total_steps": 658, "loss": 2.4232, "learning_rate": 1.1891897243618184e-06, "epoch": 0.7822289728498196, "percentage": 78.27, "elapsed_time": "22:29:49", "remaining_time": "6:14:48"}
{"current_steps": 516, "total_steps": 658, "loss": 2.4107, "learning_rate": 1.173296929546987e-06, "epoch": 0.7837478640592368, "percentage": 78.42, "elapsed_time": "22:32:26", "remaining_time": "6:12:11"}
{"current_steps": 517, "total_steps": 658, "loss": 2.4056, "learning_rate": 1.1574969206942443e-06, "epoch": 0.7852667552686539, "percentage": 78.57, "elapsed_time": "22:35:03", "remaining_time": "6:09:33"}
{"current_steps": 518, "total_steps": 658, "loss": 2.4188, "learning_rate": 1.1417900809059623e-06, "epoch": 0.786785646478071, "percentage": 78.72, "elapsed_time": "22:37:40", "remaining_time": "6:06:56"}
{"current_steps": 519, "total_steps": 658, "loss": 2.4451, "learning_rate": 1.1261767910254422e-06, "epoch": 0.7883045376874881, "percentage": 78.88, "elapsed_time": "22:40:17", "remaining_time": "6:04:19"}
{"current_steps": 520, "total_steps": 658, "loss": 2.3739, "learning_rate": 1.1106574296276923e-06, "epoch": 0.7898234288969053, "percentage": 79.03, "elapsed_time": "22:42:54", "remaining_time": "6:01:41"}
{"current_steps": 521, "total_steps": 658, "loss": 2.4307, "learning_rate": 1.095232373010226e-06, "epoch": 0.7913423201063224, "percentage": 79.18, "elapsed_time": "22:45:31", "remaining_time": "5:59:04"}
{"current_steps": 522, "total_steps": 658, "loss": 2.3165, "learning_rate": 1.0799019951839656e-06, "epoch": 0.7928612113157395, "percentage": 79.33, "elapsed_time": "22:48:08", "remaining_time": "5:56:27"}
{"current_steps": 523, "total_steps": 658, "loss": 2.4474, "learning_rate": 1.0646666678641477e-06, "epoch": 0.7943801025251567, "percentage": 79.48, "elapsed_time": "22:50:45", "remaining_time": "5:53:49"}
{"current_steps": 524, "total_steps": 658, "loss": 2.4753, "learning_rate": 1.0495267604613273e-06, "epoch": 0.7958989937345737, "percentage": 79.64, "elapsed_time": "22:53:22", "remaining_time": "5:51:12"}
{"current_steps": 525, "total_steps": 658, "loss": 2.3867, "learning_rate": 1.0344826400724185e-06, "epoch": 0.7974178849439909, "percentage": 79.79, "elapsed_time": "22:55:59", "remaining_time": "5:48:35"}
{"current_steps": 526, "total_steps": 658, "loss": 2.4024, "learning_rate": 1.0195346714717813e-06, "epoch": 0.798936776153408, "percentage": 79.94, "elapsed_time": "22:58:36", "remaining_time": "5:45:57"}
{"current_steps": 527, "total_steps": 658, "loss": 2.4095, "learning_rate": 1.0046832171023952e-06, "epoch": 0.8004556673628251, "percentage": 80.09, "elapsed_time": "23:01:13", "remaining_time": "5:43:20"}
{"current_steps": 528, "total_steps": 658, "loss": 2.4189, "learning_rate": 9.899286370670575e-07, "epoch": 0.8019745585722423, "percentage": 80.24, "elapsed_time": "23:03:50", "remaining_time": "5:40:43"}
{"current_steps": 529, "total_steps": 658, "loss": 2.386, "learning_rate": 9.752712891196558e-07, "epoch": 0.8034934497816594, "percentage": 80.4, "elapsed_time": "23:06:27", "remaining_time": "5:38:05"}
{"current_steps": 530, "total_steps": 658, "loss": 2.4168, "learning_rate": 9.607115286564972e-07, "epoch": 0.8050123409910765, "percentage": 80.55, "elapsed_time": "23:09:04", "remaining_time": "5:35:28"}
{"current_steps": 531, "total_steps": 658, "loss": 2.4961, "learning_rate": 9.46249708707681e-07, "epoch": 0.8065312322004936, "percentage": 80.7, "elapsed_time": "23:11:41", "remaining_time": "5:32:51"}
{"current_steps": 532, "total_steps": 658, "loss": 2.4079, "learning_rate": 9.318861799285539e-07, "epoch": 0.8080501234099108, "percentage": 80.85, "elapsed_time": "23:14:17", "remaining_time": "5:30:13"}
{"current_steps": 533, "total_steps": 658, "loss": 2.4301, "learning_rate": 9.176212905911946e-07, "epoch": 0.8095690146193278, "percentage": 81.0, "elapsed_time": "23:16:54", "remaining_time": "5:27:36"}
{"current_steps": 534, "total_steps": 658, "loss": 2.3374, "learning_rate": 9.034553865759754e-07, "epoch": 0.811087905828745, "percentage": 81.16, "elapsed_time": "23:19:31", "remaining_time": "5:24:58"}
{"current_steps": 535, "total_steps": 658, "loss": 2.4128, "learning_rate": 8.893888113631732e-07, "epoch": 0.8126067970381622, "percentage": 81.31, "elapsed_time": "23:22:07", "remaining_time": "5:22:21"}
{"current_steps": 536, "total_steps": 658, "loss": 2.4006, "learning_rate": 8.754219060246432e-07, "epoch": 0.8141256882475792, "percentage": 81.46, "elapsed_time": "23:24:44", "remaining_time": "5:19:44"}
{"current_steps": 537, "total_steps": 658, "loss": 2.4266, "learning_rate": 8.615550092155478e-07, "epoch": 0.8156445794569964, "percentage": 81.61, "elapsed_time": "23:27:21", "remaining_time": "5:17:06"}
{"current_steps": 538, "total_steps": 658, "loss": 2.3381, "learning_rate": 8.477884571661449e-07, "epoch": 0.8171634706664135, "percentage": 81.76, "elapsed_time": "23:29:58", "remaining_time": "5:14:29"}
{"current_steps": 539, "total_steps": 658, "loss": 2.3337, "learning_rate": 8.341225836736367e-07, "epoch": 0.8186823618758307, "percentage": 81.91, "elapsed_time": "23:32:35", "remaining_time": "5:11:52"}
{"current_steps": 540, "total_steps": 658, "loss": 2.4661, "learning_rate": 8.20557720094074e-07, "epoch": 0.8202012530852477, "percentage": 82.07, "elapsed_time": "23:35:12", "remaining_time": "5:09:14"}
{"current_steps": 541, "total_steps": 658, "loss": 2.4553, "learning_rate": 8.070941953343242e-07, "epoch": 0.8217201442946649, "percentage": 82.22, "elapsed_time": "23:37:49", "remaining_time": "5:06:37"}
{"current_steps": 542, "total_steps": 658, "loss": 2.3849, "learning_rate": 7.937323358440935e-07, "epoch": 0.8232390355040821, "percentage": 82.37, "elapsed_time": "23:40:26", "remaining_time": "5:04:00"}
{"current_steps": 543, "total_steps": 658, "loss": 2.3504, "learning_rate": 7.804724656080182e-07, "epoch": 0.8247579267134991, "percentage": 82.52, "elapsed_time": "23:43:03", "remaining_time": "5:01:23"}
{"current_steps": 544, "total_steps": 658, "loss": 2.4097, "learning_rate": 7.673149061377966e-07, "epoch": 0.8262768179229163, "percentage": 82.67, "elapsed_time": "23:45:40", "remaining_time": "4:58:45"}
{"current_steps": 545, "total_steps": 658, "loss": 2.3468, "learning_rate": 7.542599764644049e-07, "epoch": 0.8277957091323334, "percentage": 82.83, "elapsed_time": "23:48:17", "remaining_time": "4:56:08"}
{"current_steps": 546, "total_steps": 658, "loss": 2.3823, "learning_rate": 7.413079931303591e-07, "epoch": 0.8293146003417505, "percentage": 82.98, "elapsed_time": "23:50:54", "remaining_time": "4:53:31"}
{"current_steps": 547, "total_steps": 658, "loss": 2.4564, "learning_rate": 7.284592701820325e-07, "epoch": 0.8308334915511677, "percentage": 83.13, "elapsed_time": "23:53:31", "remaining_time": "4:50:53"}
{"current_steps": 548, "total_steps": 658, "loss": 2.4416, "learning_rate": 7.157141191620548e-07, "epoch": 0.8323523827605848, "percentage": 83.28, "elapsed_time": "23:56:08", "remaining_time": "4:48:16"}
{"current_steps": 549, "total_steps": 658, "loss": 2.4262, "learning_rate": 7.030728491017408e-07, "epoch": 0.8338712739700019, "percentage": 83.43, "elapsed_time": "23:58:45", "remaining_time": "4:45:39"}
{"current_steps": 550, "total_steps": 658, "loss": 2.3054, "learning_rate": 6.905357665136142e-07, "epoch": 0.835390165179419, "percentage": 83.59, "elapsed_time": "1 day, 0:01:22", "remaining_time": "4:43:02"}
{"current_steps": 551, "total_steps": 658, "loss": 2.5036, "learning_rate": 6.781031753839662e-07, "epoch": 0.8369090563888362, "percentage": 83.74, "elapsed_time": "1 day, 0:03:59", "remaining_time": "4:40:24"}
{"current_steps": 552, "total_steps": 658, "loss": 2.3844, "learning_rate": 6.657753771654812e-07, "epoch": 0.8384279475982532, "percentage": 83.89, "elapsed_time": "1 day, 0:06:36", "remaining_time": "4:37:47"}
{"current_steps": 553, "total_steps": 658, "loss": 2.3961, "learning_rate": 6.535526707699408e-07, "epoch": 0.8399468388076704, "percentage": 84.04, "elapsed_time": "1 day, 0:09:13", "remaining_time": "4:35:10"}
{"current_steps": 554, "total_steps": 658, "loss": 2.4356, "learning_rate": 6.414353525609628e-07, "epoch": 0.8414657300170876, "percentage": 84.19, "elapsed_time": "1 day, 0:11:50", "remaining_time": "4:32:32"}
{"current_steps": 555, "total_steps": 658, "loss": 2.429, "learning_rate": 6.294237163468231e-07, "epoch": 0.8429846212265046, "percentage": 84.35, "elapsed_time": "1 day, 0:14:27", "remaining_time": "4:29:55"}
{"current_steps": 556, "total_steps": 658, "loss": 2.4262, "learning_rate": 6.175180533733277e-07, "epoch": 0.8445035124359218, "percentage": 84.5, "elapsed_time": "1 day, 0:17:04", "remaining_time": "4:27:18"}
{"current_steps": 557, "total_steps": 658, "loss": 2.4062, "learning_rate": 6.057186523167529e-07, "epoch": 0.8460224036453389, "percentage": 84.65, "elapsed_time": "1 day, 0:19:41", "remaining_time": "4:24:41"}
{"current_steps": 558, "total_steps": 658, "loss": 2.4547, "learning_rate": 5.940257992768456e-07, "epoch": 0.847541294854756, "percentage": 84.8, "elapsed_time": "1 day, 0:22:18", "remaining_time": "4:22:03"}
{"current_steps": 559, "total_steps": 658, "loss": 2.4496, "learning_rate": 5.824397777698859e-07, "epoch": 0.8490601860641731, "percentage": 84.95, "elapsed_time": "1 day, 0:24:55", "remaining_time": "4:19:26"}
{"current_steps": 560, "total_steps": 658, "loss": 2.3832, "learning_rate": 5.709608687218116e-07, "epoch": 0.8505790772735903, "percentage": 85.11, "elapsed_time": "1 day, 0:27:32", "remaining_time": "4:16:49"}
{"current_steps": 561, "total_steps": 658, "loss": 2.4172, "learning_rate": 5.595893504614097e-07, "epoch": 0.8520979684830075, "percentage": 85.26, "elapsed_time": "1 day, 0:30:09", "remaining_time": "4:14:11"}
{"current_steps": 562, "total_steps": 658, "loss": 2.4194, "learning_rate": 5.483254987135644e-07, "epoch": 0.8536168596924245, "percentage": 85.41, "elapsed_time": "1 day, 0:32:46", "remaining_time": "4:11:34"}
{"current_steps": 563, "total_steps": 658, "loss": 2.3656, "learning_rate": 5.371695865925736e-07, "epoch": 0.8551357509018417, "percentage": 85.56, "elapsed_time": "1 day, 0:35:23", "remaining_time": "4:08:57"}
{"current_steps": 564, "total_steps": 658, "loss": 2.3517, "learning_rate": 5.261218845955246e-07, "epoch": 0.8566546421112587, "percentage": 85.71, "elapsed_time": "1 day, 0:38:00", "remaining_time": "4:06:20"}
{"current_steps": 565, "total_steps": 658, "loss": 2.458, "learning_rate": 5.151826605957394e-07, "epoch": 0.8581735333206759, "percentage": 85.87, "elapsed_time": "1 day, 0:40:37", "remaining_time": "4:03:42"}
{"current_steps": 566, "total_steps": 658, "loss": 2.491, "learning_rate": 5.043521798362755e-07, "epoch": 0.859692424530093, "percentage": 86.02, "elapsed_time": "1 day, 0:43:15", "remaining_time": "4:01:05"}
{"current_steps": 567, "total_steps": 658, "loss": 2.4658, "learning_rate": 4.936307049234956e-07, "epoch": 0.8612113157395102, "percentage": 86.17, "elapsed_time": "1 day, 0:45:52", "remaining_time": "3:58:28"}
{"current_steps": 568, "total_steps": 658, "loss": 2.4005, "learning_rate": 4.830184958207007e-07, "epoch": 0.8627302069489273, "percentage": 86.32, "elapsed_time": "1 day, 0:48:29", "remaining_time": "3:55:51"}
{"current_steps": 569, "total_steps": 658, "loss": 2.4644, "learning_rate": 4.725158098418309e-07, "epoch": 0.8642490981583444, "percentage": 86.47, "elapsed_time": "1 day, 0:51:06", "remaining_time": "3:53:13"}
{"current_steps": 570, "total_steps": 658, "loss": 2.2967, "learning_rate": 4.6212290164521554e-07, "epoch": 0.8657679893677616, "percentage": 86.63, "elapsed_time": "1 day, 0:53:43", "remaining_time": "3:50:36"}
{"current_steps": 571, "total_steps": 658, "loss": 2.3816, "learning_rate": 4.5184002322740784e-07, "epoch": 0.8672868805771786, "percentage": 86.78, "elapsed_time": "1 day, 0:56:20", "remaining_time": "3:47:59"}
{"current_steps": 572, "total_steps": 658, "loss": 2.4745, "learning_rate": 4.4166742391707593e-07, "epoch": 0.8688057717865958, "percentage": 86.93, "elapsed_time": "1 day, 0:58:57", "remaining_time": "3:45:22"}
{"current_steps": 573, "total_steps": 658, "loss": 2.448, "learning_rate": 4.316053503689466e-07, "epoch": 0.870324662996013, "percentage": 87.08, "elapsed_time": "1 day, 1:01:34", "remaining_time": "3:42:44"}
{"current_steps": 574, "total_steps": 658, "loss": 2.4813, "learning_rate": 4.2165404655783836e-07, "epoch": 0.87184355420543, "percentage": 87.23, "elapsed_time": "1 day, 1:04:11", "remaining_time": "3:40:07"}
{"current_steps": 575, "total_steps": 658, "loss": 2.4648, "learning_rate": 4.1181375377273237e-07, "epoch": 0.8733624454148472, "percentage": 87.39, "elapsed_time": "1 day, 1:06:48", "remaining_time": "3:37:30"}
{"current_steps": 576, "total_steps": 658, "loss": 2.5165, "learning_rate": 4.020847106109349e-07, "epoch": 0.8748813366242643, "percentage": 87.54, "elapsed_time": "1 day, 1:09:25", "remaining_time": "3:34:52"}
{"current_steps": 577, "total_steps": 658, "loss": 2.3707, "learning_rate": 3.9246715297228176e-07, "epoch": 0.8764002278336814, "percentage": 87.69, "elapsed_time": "1 day, 1:12:02", "remaining_time": "3:32:15"}
{"current_steps": 578, "total_steps": 658, "loss": 2.4946, "learning_rate": 3.829613140534222e-07, "epoch": 0.8779191190430985, "percentage": 87.84, "elapsed_time": "1 day, 1:14:39", "remaining_time": "3:29:38"}
{"current_steps": 579, "total_steps": 658, "loss": 2.4344, "learning_rate": 3.7356742434216775e-07, "epoch": 0.8794380102525157, "percentage": 87.99, "elapsed_time": "1 day, 1:17:16", "remaining_time": "3:27:01"}
{"current_steps": 580, "total_steps": 658, "loss": 2.4431, "learning_rate": 3.642857116118986e-07, "epoch": 0.8809569014619328, "percentage": 88.15, "elapsed_time": "1 day, 1:19:53", "remaining_time": "3:24:23"}
{"current_steps": 581, "total_steps": 658, "loss": 2.3728, "learning_rate": 3.5511640091604293e-07, "epoch": 0.8824757926713499, "percentage": 88.3, "elapsed_time": "1 day, 1:22:30", "remaining_time": "3:21:46"}
{"current_steps": 582, "total_steps": 658, "loss": 2.358, "learning_rate": 3.4605971458262e-07, "epoch": 0.8839946838807671, "percentage": 88.45, "elapsed_time": "1 day, 1:25:07", "remaining_time": "3:19:09"}
{"current_steps": 583, "total_steps": 658, "loss": 2.4764, "learning_rate": 3.371158722088497e-07, "epoch": 0.8855135750901841, "percentage": 88.6, "elapsed_time": "1 day, 1:27:44", "remaining_time": "3:16:32"}
{"current_steps": 584, "total_steps": 658, "loss": 2.4414, "learning_rate": 3.2828509065582713e-07, "epoch": 0.8870324662996013, "percentage": 88.75, "elapsed_time": "1 day, 1:30:21", "remaining_time": "3:13:54"}
{"current_steps": 585, "total_steps": 658, "loss": 2.4017, "learning_rate": 3.195675840432655e-07, "epoch": 0.8885513575090184, "percentage": 88.91, "elapsed_time": "1 day, 1:32:58", "remaining_time": "3:11:17"}
{"current_steps": 586, "total_steps": 658, "loss": 2.4212, "learning_rate": 3.109635637443026e-07, "epoch": 0.8900702487184355, "percentage": 89.06, "elapsed_time": "1 day, 1:35:35", "remaining_time": "3:08:40"}
{"current_steps": 587, "total_steps": 658, "loss": 2.2654, "learning_rate": 3.02473238380378e-07, "epoch": 0.8915891399278527, "percentage": 89.21, "elapsed_time": "1 day, 1:38:12", "remaining_time": "3:06:03"}
{"current_steps": 588, "total_steps": 658, "loss": 2.2746, "learning_rate": 2.9409681381617315e-07, "epoch": 0.8931080311372698, "percentage": 89.36, "elapsed_time": "1 day, 1:40:49", "remaining_time": "3:03:25"}
{"current_steps": 589, "total_steps": 658, "loss": 2.3712, "learning_rate": 2.858344931546181e-07, "epoch": 0.894626922346687, "percentage": 89.51, "elapsed_time": "1 day, 1:43:26", "remaining_time": "3:00:48"}
{"current_steps": 590, "total_steps": 658, "loss": 2.4358, "learning_rate": 2.776864767319731e-07, "epoch": 0.896145813556104, "percentage": 89.67, "elapsed_time": "1 day, 1:46:03", "remaining_time": "2:58:11"}
{"current_steps": 591, "total_steps": 658, "loss": 2.4577, "learning_rate": 2.696529621129618e-07, "epoch": 0.8976647047655212, "percentage": 89.82, "elapsed_time": "1 day, 1:48:40", "remaining_time": "2:55:34"}
{"current_steps": 592, "total_steps": 658, "loss": 2.3876, "learning_rate": 2.617341440859883e-07, "epoch": 0.8991835959749382, "percentage": 89.97, "elapsed_time": "1 day, 1:51:17", "remaining_time": "2:52:56"}
{"current_steps": 593, "total_steps": 658, "loss": 2.3993, "learning_rate": 2.539302146584116e-07, "epoch": 0.9007024871843554, "percentage": 90.12, "elapsed_time": "1 day, 1:53:54", "remaining_time": "2:50:19"}
{"current_steps": 594, "total_steps": 658, "loss": 2.3749, "learning_rate": 2.4624136305188895e-07, "epoch": 0.9022213783937726, "percentage": 90.27, "elapsed_time": "1 day, 1:56:31", "remaining_time": "2:47:42"}
{"current_steps": 595, "total_steps": 658, "loss": 2.4471, "learning_rate": 2.3866777569779234e-07, "epoch": 0.9037402696031896, "percentage": 90.43, "elapsed_time": "1 day, 1:59:08", "remaining_time": "2:45:05"}
{"current_steps": 596, "total_steps": 658, "loss": 2.3111, "learning_rate": 2.3120963623267822e-07, "epoch": 0.9052591608126068, "percentage": 90.58, "elapsed_time": "1 day, 2:01:45", "remaining_time": "2:42:27"}
{"current_steps": 597, "total_steps": 658, "loss": 2.3944, "learning_rate": 2.2386712549384848e-07, "epoch": 0.9067780520220239, "percentage": 90.73, "elapsed_time": "1 day, 2:04:22", "remaining_time": "2:39:50"}
{"current_steps": 598, "total_steps": 658, "loss": 2.4126, "learning_rate": 2.1664042151495424e-07, "epoch": 0.9082969432314411, "percentage": 90.88, "elapsed_time": "1 day, 2:06:59", "remaining_time": "2:37:13"}
{"current_steps": 599, "total_steps": 658, "loss": 2.5427, "learning_rate": 2.095296995216828e-07, "epoch": 0.9098158344408582, "percentage": 91.03, "elapsed_time": "1 day, 2:09:36", "remaining_time": "2:34:36"}
{"current_steps": 600, "total_steps": 658, "loss": 2.4433, "learning_rate": 2.0253513192751374e-07, "epoch": 0.9113347256502753, "percentage": 91.19, "elapsed_time": "1 day, 2:12:13", "remaining_time": "2:31:58"}
{"current_steps": 400, "total_steps": 329, "epoch": 0.6075564837668502, "percentage": 121.58, "elapsed_time": "0:00:00", "remaining_time": "0:00:00"}
{"current_steps": 401, "total_steps": 658, "loss": 2.3709, "learning_rate": 3.4971232697124046e-06, "epoch": 0.6090753749762673, "percentage": 60.94, "elapsed_time": "0:02:35", "remaining_time": "0:01:39"}
{"current_steps": 402, "total_steps": 658, "loss": 2.4012, "learning_rate": 3.4736594581085837e-06, "epoch": 0.6105942661856845, "percentage": 61.09, "elapsed_time": "0:05:12", "remaining_time": "0:03:19"}
{"current_steps": 403, "total_steps": 658, "loss": 2.484, "learning_rate": 3.4502326556411e-06, "epoch": 0.6121131573951015, "percentage": 61.25, "elapsed_time": "0:07:49", "remaining_time": "0:04:57"}
{"current_steps": 404, "total_steps": 658, "loss": 2.3686, "learning_rate": 3.4268434303389747e-06, "epoch": 0.6136320486045187, "percentage": 61.4, "elapsed_time": "0:10:27", "remaining_time": "0:06:34"}
{"current_steps": 405, "total_steps": 658, "loss": 2.4893, "learning_rate": 3.403492349320101e-06, "epoch": 0.6151509398139359, "percentage": 61.55, "elapsed_time": "0:13:04", "remaining_time": "0:08:09"}
{"current_steps": 406, "total_steps": 658, "loss": 2.4911, "learning_rate": 3.380179978777482e-06, "epoch": 0.6166698310233529, "percentage": 61.7, "elapsed_time": "0:15:41", "remaining_time": "0:09:44"}
{"current_steps": 407, "total_steps": 658, "loss": 2.4203, "learning_rate": 3.356906883965516e-06, "epoch": 0.6181887222327701, "percentage": 61.85, "elapsed_time": "0:18:18", "remaining_time": "0:11:17"}
{"current_steps": 408, "total_steps": 658, "loss": 2.4613, "learning_rate": 3.33367362918628e-06, "epoch": 0.6197076134421872, "percentage": 62.01, "elapsed_time": "0:20:55", "remaining_time": "0:12:49"}
{"current_steps": 409, "total_steps": 658, "loss": 2.4544, "learning_rate": 3.3104807777758487e-06, "epoch": 0.6212265046516043, "percentage": 62.16, "elapsed_time": "0:23:33", "remaining_time": "0:14:20"}
{"current_steps": 410, "total_steps": 658, "loss": 2.4338, "learning_rate": 3.2873288920906436e-06, "epoch": 0.6227453958610214, "percentage": 62.31, "elapsed_time": "0:26:10", "remaining_time": "0:15:49"}
{"current_steps": 411, "total_steps": 658, "loss": 2.5019, "learning_rate": 3.2642185334937853e-06, "epoch": 0.6242642870704386, "percentage": 62.46, "elapsed_time": "0:28:47", "remaining_time": "0:17:18"}
{"current_steps": 412, "total_steps": 658, "loss": 2.4375, "learning_rate": 3.2411502623414925e-06, "epoch": 0.6257831782798557, "percentage": 62.61, "elapsed_time": "0:31:24", "remaining_time": "0:18:45"}
{"current_steps": 413, "total_steps": 658, "loss": 2.4859, "learning_rate": 3.2181246379694886e-06, "epoch": 0.6273020694892728, "percentage": 62.77, "elapsed_time": "0:34:01", "remaining_time": "0:20:11"}
{"current_steps": 414, "total_steps": 658, "loss": 2.4439, "learning_rate": 3.1951422186794447e-06, "epoch": 0.62882096069869, "percentage": 62.92, "elapsed_time": "0:36:38", "remaining_time": "0:21:35"}
{"current_steps": 415, "total_steps": 658, "loss": 2.411, "learning_rate": 3.1722035617254333e-06, "epoch": 0.630339851908107, "percentage": 63.07, "elapsed_time": "0:39:15", "remaining_time": "0:22:59"}
{"current_steps": 416, "total_steps": 658, "loss": 2.3643, "learning_rate": 3.149309223300428e-06, "epoch": 0.6318587431175242, "percentage": 63.22, "elapsed_time": "0:41:53", "remaining_time": "0:24:21"}
{"current_steps": 417, "total_steps": 658, "loss": 2.4063, "learning_rate": 3.126459758522813e-06, "epoch": 0.6333776343269414, "percentage": 63.37, "elapsed_time": "0:44:30", "remaining_time": "0:25:43"}
{"current_steps": 418, "total_steps": 658, "loss": 2.4542, "learning_rate": 3.103655721422917e-06, "epoch": 0.6348965255363584, "percentage": 63.53, "elapsed_time": "0:47:07", "remaining_time": "0:27:03"}
{"current_steps": 419, "total_steps": 658, "loss": 2.392, "learning_rate": 3.080897664929592e-06, "epoch": 0.6364154167457756, "percentage": 63.68, "elapsed_time": "0:49:44", "remaining_time": "0:28:22"}
{"current_steps": 420, "total_steps": 658, "loss": 2.4415, "learning_rate": 3.0581861408567907e-06, "epoch": 0.6379343079551927, "percentage": 63.83, "elapsed_time": "0:52:21", "remaining_time": "0:29:40"}
{"current_steps": 421, "total_steps": 658, "loss": 2.414, "learning_rate": 3.035521699890206e-06, "epoch": 0.6394531991646099, "percentage": 63.98, "elapsed_time": "0:54:59", "remaining_time": "0:30:57"}
{"current_steps": 422, "total_steps": 658, "loss": 2.48, "learning_rate": 3.0129048915739013e-06, "epoch": 0.6409720903740269, "percentage": 64.13, "elapsed_time": "0:57:36", "remaining_time": "0:32:12"}
{"current_steps": 423, "total_steps": 658, "loss": 2.4107, "learning_rate": 2.9903362642969903e-06, "epoch": 0.6424909815834441, "percentage": 64.29, "elapsed_time": "1:00:13", "remaining_time": "0:33:27"}
{"current_steps": 424, "total_steps": 658, "loss": 2.4132, "learning_rate": 2.967816365280351e-06, "epoch": 0.6440098727928613, "percentage": 64.44, "elapsed_time": "1:02:50", "remaining_time": "0:34:40"}
{"current_steps": 425, "total_steps": 658, "loss": 2.4418, "learning_rate": 2.94534574056334e-06, "epoch": 0.6455287640022783, "percentage": 64.59, "elapsed_time": "1:05:27", "remaining_time": "0:35:53"}
{"current_steps": 426, "total_steps": 658, "loss": 2.4867, "learning_rate": 2.9229249349905686e-06, "epoch": 0.6470476552116955, "percentage": 64.74, "elapsed_time": "1:08:04", "remaining_time": "0:37:04"}
{"current_steps": 427, "total_steps": 658, "loss": 2.4427, "learning_rate": 2.9005544921986774e-06, "epoch": 0.6485665464211126, "percentage": 64.89, "elapsed_time": "1:10:42", "remaining_time": "0:38:14"}
{"current_steps": 428, "total_steps": 658, "loss": 2.4603, "learning_rate": 2.8782349546031673e-06, "epoch": 0.6500854376305297, "percentage": 65.05, "elapsed_time": "1:13:19", "remaining_time": "0:39:24"}
{"current_steps": 429, "total_steps": 658, "loss": 2.382, "learning_rate": 2.8559668633852433e-06, "epoch": 0.6516043288399468, "percentage": 65.2, "elapsed_time": "1:15:56", "remaining_time": "0:40:32"}
{"current_steps": 430, "total_steps": 658, "loss": 2.4133, "learning_rate": 2.8337507584786826e-06, "epoch": 0.653123220049364, "percentage": 65.35, "elapsed_time": "1:18:33", "remaining_time": "0:41:39"}
{"current_steps": 431, "total_steps": 658, "loss": 2.4165, "learning_rate": 2.811587178556764e-06, "epoch": 0.6546421112587811, "percentage": 65.5, "elapsed_time": "1:21:10", "remaining_time": "0:42:45"}
{"current_steps": 432, "total_steps": 658, "loss": 2.4604, "learning_rate": 2.789476661019186e-06, "epoch": 0.6561610024681982, "percentage": 65.65, "elapsed_time": "1:23:47", "remaining_time": "0:43:50"}
{"current_steps": 433, "total_steps": 658, "loss": 2.4372, "learning_rate": 2.7674197419790493e-06, "epoch": 0.6576798936776154, "percentage": 65.81, "elapsed_time": "1:26:25", "remaining_time": "0:44:54"}
{"current_steps": 434, "total_steps": 658, "loss": 2.4066, "learning_rate": 2.7454169562498503e-06, "epoch": 0.6591987848870324, "percentage": 65.96, "elapsed_time": "1:29:02", "remaining_time": "0:45:57"}
{"current_steps": 435, "total_steps": 658, "loss": 2.42, "learning_rate": 2.723468837332517e-06, "epoch": 0.6607176760964496, "percentage": 66.11, "elapsed_time": "1:31:39", "remaining_time": "0:46:59"}
{"current_steps": 436, "total_steps": 658, "loss": 2.3347, "learning_rate": 2.7015759174024756e-06, "epoch": 0.6622365673058667, "percentage": 66.26, "elapsed_time": "1:34:16", "remaining_time": "0:48:00"}
{"current_steps": 437, "total_steps": 658, "loss": 2.4629, "learning_rate": 2.6797387272967414e-06, "epoch": 0.6637554585152838, "percentage": 66.41, "elapsed_time": "1:36:53", "remaining_time": "0:49:00"}
{"current_steps": 438, "total_steps": 658, "loss": 2.4078, "learning_rate": 2.65795779650105e-06, "epoch": 0.665274349724701, "percentage": 66.57, "elapsed_time": "1:39:31", "remaining_time": "0:49:59"}
{"current_steps": 439, "total_steps": 658, "loss": 2.4538, "learning_rate": 2.63623365313702e-06, "epoch": 0.6667932409341181, "percentage": 66.72, "elapsed_time": "1:42:08", "remaining_time": "0:50:57"}
{"current_steps": 440, "total_steps": 658, "loss": 2.4317, "learning_rate": 2.614566823949348e-06, "epoch": 0.6683121321435352, "percentage": 66.87, "elapsed_time": "1:44:45", "remaining_time": "0:51:54"}
{"current_steps": 441, "total_steps": 658, "loss": 2.3749, "learning_rate": 2.592957834293033e-06, "epoch": 0.6698310233529523, "percentage": 67.02, "elapsed_time": "1:47:22", "remaining_time": "0:52:50"}
{"current_steps": 442, "total_steps": 658, "loss": 2.4384, "learning_rate": 2.5714072081206407e-06, "epoch": 0.6713499145623695, "percentage": 67.17, "elapsed_time": "1:49:59", "remaining_time": "0:53:45"}
{"current_steps": 443, "total_steps": 658, "loss": 2.4108, "learning_rate": 2.5499154679696014e-06, "epoch": 0.6728688057717866, "percentage": 67.33, "elapsed_time": "1:52:37", "remaining_time": "0:54:39"}
{"current_steps": 444, "total_steps": 658, "loss": 2.4876, "learning_rate": 2.528483134949535e-06, "epoch": 0.6743876969812037, "percentage": 67.48, "elapsed_time": "1:55:14", "remaining_time": "0:55:32"}
{"current_steps": 445, "total_steps": 658, "loss": 2.4413, "learning_rate": 2.50711072872962e-06, "epoch": 0.6759065881906209, "percentage": 67.63, "elapsed_time": "1:57:51", "remaining_time": "0:56:24"}
{"current_steps": 446, "total_steps": 658, "loss": 2.4378, "learning_rate": 2.4857987675259887e-06, "epoch": 0.6774254794000379, "percentage": 67.78, "elapsed_time": "2:00:28", "remaining_time": "0:57:16"}
{"current_steps": 447, "total_steps": 658, "loss": 2.4039, "learning_rate": 2.4645477680891734e-06, "epoch": 0.6789443706094551, "percentage": 67.93, "elapsed_time": "2:03:05", "remaining_time": "0:58:06"}
{"current_steps": 448, "total_steps": 658, "loss": 2.5087, "learning_rate": 2.4433582456915556e-06, "epoch": 0.6804632618188722, "percentage": 68.09, "elapsed_time": "2:05:43", "remaining_time": "0:58:55"}
{"current_steps": 449, "total_steps": 658, "loss": 2.3984, "learning_rate": 2.422230714114891e-06, "epoch": 0.6819821530282894, "percentage": 68.24, "elapsed_time": "2:08:20", "remaining_time": "0:59:44"}
{"current_steps": 450, "total_steps": 658, "loss": 2.3983, "learning_rate": 2.4011656856378513e-06, "epoch": 0.6835010442377065, "percentage": 68.39, "elapsed_time": "2:10:57", "remaining_time": "1:00:32"}
{"current_steps": 451, "total_steps": 658, "loss": 2.4803, "learning_rate": 2.3801636710235836e-06, "epoch": 0.6850199354471236, "percentage": 68.54, "elapsed_time": "2:13:35", "remaining_time": "1:01:18"}
{"current_steps": 452, "total_steps": 658, "loss": 2.4262, "learning_rate": 2.3592251795073564e-06, "epoch": 0.6865388266565408, "percentage": 68.69, "elapsed_time": "2:16:12", "remaining_time": "1:02:04"}
{"current_steps": 453, "total_steps": 658, "loss": 2.4503, "learning_rate": 2.338350718784177e-06, "epoch": 0.6880577178659578, "percentage": 68.84, "elapsed_time": "2:18:49", "remaining_time": "1:02:49"}
{"current_steps": 454, "total_steps": 658, "loss": 2.4356, "learning_rate": 2.3175407949965167e-06, "epoch": 0.689576609075375, "percentage": 69.0, "elapsed_time": "2:21:26", "remaining_time": "1:03:33"}
{"current_steps": 455, "total_steps": 658, "loss": 2.4435, "learning_rate": 2.296795912722014e-06, "epoch": 0.691095500284792, "percentage": 69.15, "elapsed_time": "2:24:03", "remaining_time": "1:04:16"}
{"current_steps": 456, "total_steps": 658, "loss": 2.3985, "learning_rate": 2.2761165749612417e-06, "epoch": 0.6926143914942092, "percentage": 69.3, "elapsed_time": "2:26:41", "remaining_time": "1:04:58"}
{"current_steps": 457, "total_steps": 658, "loss": 2.4073, "learning_rate": 2.25550328312553e-06, "epoch": 0.6941332827036264, "percentage": 69.45, "elapsed_time": "2:29:18", "remaining_time": "1:05:40"}
{"current_steps": 458, "total_steps": 658, "loss": 2.3838, "learning_rate": 2.2349565370247837e-06, "epoch": 0.6956521739130435, "percentage": 69.6, "elapsed_time": "2:31:55", "remaining_time": "1:06:20"}
{"current_steps": 459, "total_steps": 658, "loss": 2.4342, "learning_rate": 2.214476834855382e-06, "epoch": 0.6971710651224606, "percentage": 69.76, "elapsed_time": "2:34:32", "remaining_time": "1:07:00"}
{"current_steps": 460, "total_steps": 658, "loss": 2.4411, "learning_rate": 2.1940646731880887e-06, "epoch": 0.6986899563318777, "percentage": 69.91, "elapsed_time": "2:37:10", "remaining_time": "1:07:39"}
{"current_steps": 461, "total_steps": 658, "loss": 2.4685, "learning_rate": 2.173720546956015e-06, "epoch": 0.7002088475412949, "percentage": 70.06, "elapsed_time": "2:39:47", "remaining_time": "1:08:16"}
{"current_steps": 462, "total_steps": 658, "loss": 2.4395, "learning_rate": 2.1534449494426203e-06, "epoch": 0.7017277387507119, "percentage": 70.21, "elapsed_time": "2:42:24", "remaining_time": "1:08:53"}
{"current_steps": 463, "total_steps": 658, "loss": 2.3932, "learning_rate": 2.1332383722697483e-06, "epoch": 0.7032466299601291, "percentage": 70.36, "elapsed_time": "2:45:01", "remaining_time": "1:09:30"}
{"current_steps": 464, "total_steps": 658, "loss": 2.4367, "learning_rate": 2.1131013053857097e-06, "epoch": 0.7047655211695463, "percentage": 70.52, "elapsed_time": "2:47:38", "remaining_time": "1:10:05"}
{"current_steps": 465, "total_steps": 658, "loss": 2.4825, "learning_rate": 2.0930342370534013e-06, "epoch": 0.7062844123789633, "percentage": 70.67, "elapsed_time": "2:50:15", "remaining_time": "1:10:40"}
{"current_steps": 466, "total_steps": 658, "loss": 2.4702, "learning_rate": 2.073037653838466e-06, "epoch": 0.7078033035883805, "percentage": 70.82, "elapsed_time": "2:52:52", "remaining_time": "1:11:13"}
{"current_steps": 467, "total_steps": 658, "loss": 2.3709, "learning_rate": 2.053112040597495e-06, "epoch": 0.7093221947977976, "percentage": 70.97, "elapsed_time": "2:55:29", "remaining_time": "1:11:46"}
{"current_steps": 468, "total_steps": 658, "loss": 2.3477, "learning_rate": 2.0332578804662783e-06, "epoch": 0.7108410860072147, "percentage": 71.12, "elapsed_time": "2:58:07", "remaining_time": "1:12:18"}
{"current_steps": 469, "total_steps": 658, "loss": 2.3872, "learning_rate": 2.013475654848076e-06, "epoch": 0.7123599772166319, "percentage": 71.28, "elapsed_time": "3:00:44", "remaining_time": "1:12:50"}
{"current_steps": 470, "total_steps": 658, "loss": 2.4375, "learning_rate": 1.99376584340196e-06, "epoch": 0.713878868426049, "percentage": 71.43, "elapsed_time": "3:03:21", "remaining_time": "1:13:20"}
{"current_steps": 471, "total_steps": 658, "loss": 2.4044, "learning_rate": 1.9741289240311757e-06, "epoch": 0.7153977596354661, "percentage": 71.58, "elapsed_time": "3:05:58", "remaining_time": "1:13:50"}
{"current_steps": 472, "total_steps": 658, "loss": 2.3834, "learning_rate": 1.954565372871554e-06, "epoch": 0.7169166508448832, "percentage": 71.73, "elapsed_time": "3:08:35", "remaining_time": "1:14:19"}
{"current_steps": 473, "total_steps": 658, "loss": 2.3561, "learning_rate": 1.935075664279978e-06, "epoch": 0.7184355420543004, "percentage": 71.88, "elapsed_time": "3:11:13", "remaining_time": "1:14:47"}
{"current_steps": 474, "total_steps": 658, "loss": 2.4273, "learning_rate": 1.9156602708228584e-06, "epoch": 0.7199544332637174, "percentage": 72.04, "elapsed_time": "3:13:50", "remaining_time": "1:15:14"}
{"current_steps": 475, "total_steps": 658, "loss": 2.4413, "learning_rate": 1.8963196632647008e-06, "epoch": 0.7214733244731346, "percentage": 72.19, "elapsed_time": "3:16:27", "remaining_time": "1:15:41"}
{"current_steps": 476, "total_steps": 658, "loss": 2.4814, "learning_rate": 1.8770543105566752e-06, "epoch": 0.7229922156825518, "percentage": 72.34, "elapsed_time": "3:19:04", "remaining_time": "1:16:07"}
{"current_steps": 477, "total_steps": 658, "loss": 2.3857, "learning_rate": 1.8578646798252432e-06, "epoch": 0.7245111068919688, "percentage": 72.49, "elapsed_time": "3:21:41", "remaining_time": "1:16:32"}
{"current_steps": 478, "total_steps": 658, "loss": 2.4597, "learning_rate": 1.8387512363608496e-06, "epoch": 0.726029998101386, "percentage": 72.64, "elapsed_time": "3:24:19", "remaining_time": "1:16:56"}
{"current_steps": 479, "total_steps": 658, "loss": 2.4199, "learning_rate": 1.8197144436066167e-06, "epoch": 0.7275488893108031, "percentage": 72.8, "elapsed_time": "3:26:56", "remaining_time": "1:17:19"}
{"current_steps": 480, "total_steps": 658, "loss": 2.4812, "learning_rate": 1.8007547631471289e-06, "epoch": 0.7290677805202203, "percentage": 72.95, "elapsed_time": "3:29:33", "remaining_time": "1:17:42"}
{"current_steps": 481, "total_steps": 658, "loss": 2.3901, "learning_rate": 1.781872654697226e-06, "epoch": 0.7305866717296373, "percentage": 73.1, "elapsed_time": "3:32:10", "remaining_time": "1:18:04"}
{"current_steps": 482, "total_steps": 658, "loss": 2.4603, "learning_rate": 1.7630685760908623e-06, "epoch": 0.7321055629390545, "percentage": 73.25, "elapsed_time": "3:34:47", "remaining_time": "1:18:25"}
{"current_steps": 483, "total_steps": 658, "loss": 2.4276, "learning_rate": 1.7443429832700038e-06, "epoch": 0.7336244541484717, "percentage": 73.4, "elapsed_time": "3:37:24", "remaining_time": "1:18:46"}
{"current_steps": 484, "total_steps": 658, "loss": 2.4272, "learning_rate": 1.7256963302735752e-06, "epoch": 0.7351433453578887, "percentage": 73.56, "elapsed_time": "3:40:02", "remaining_time": "1:19:06"}
{"current_steps": 485, "total_steps": 658, "loss": 2.3496, "learning_rate": 1.7071290692264492e-06, "epoch": 0.7366622365673059, "percentage": 73.71, "elapsed_time": "3:42:39", "remaining_time": "1:19:25"}
{"current_steps": 486, "total_steps": 658, "loss": 2.4147, "learning_rate": 1.6886416503284835e-06, "epoch": 0.738181127776723, "percentage": 73.86, "elapsed_time": "3:45:16", "remaining_time": "1:19:43"}
{"current_steps": 487, "total_steps": 658, "loss": 2.4918, "learning_rate": 1.6702345218436066e-06, "epoch": 0.7397000189861401, "percentage": 74.01, "elapsed_time": "3:47:53", "remaining_time": "1:20:01"}
{"current_steps": 488, "total_steps": 658, "loss": 2.4301, "learning_rate": 1.6519081300889472e-06, "epoch": 0.7412189101955572, "percentage": 74.16, "elapsed_time": "3:50:30", "remaining_time": "1:20:18"}
{"current_steps": 489, "total_steps": 658, "loss": 2.4587, "learning_rate": 1.6336629194240118e-06, "epoch": 0.7427378014049744, "percentage": 74.32, "elapsed_time": "3:53:08", "remaining_time": "1:20:34"}
{"current_steps": 490, "total_steps": 658, "loss": 2.386, "learning_rate": 1.6154993322399114e-06, "epoch": 0.7442566926143915, "percentage": 74.47, "elapsed_time": "3:55:45", "remaining_time": "1:20:49"}
{"current_steps": 491, "total_steps": 658, "loss": 2.4635, "learning_rate": 1.5974178089486364e-06, "epoch": 0.7457755838238086, "percentage": 74.62, "elapsed_time": "3:58:22", "remaining_time": "1:21:04"}
{"current_steps": 492, "total_steps": 658, "loss": 2.3878, "learning_rate": 1.5794187879723755e-06, "epoch": 0.7472944750332258, "percentage": 74.77, "elapsed_time": "4:00:59", "remaining_time": "1:21:18"}
{"current_steps": 493, "total_steps": 658, "loss": 2.4565, "learning_rate": 1.561502705732883e-06, "epoch": 0.7488133662426428, "percentage": 74.92, "elapsed_time": "4:03:36", "remaining_time": "1:21:32"}
{"current_steps": 494, "total_steps": 658, "loss": 2.3761, "learning_rate": 1.543669996640908e-06, "epoch": 0.75033225745206, "percentage": 75.08, "elapsed_time": "4:06:14", "remaining_time": "1:21:44"}
{"current_steps": 495, "total_steps": 658, "loss": 2.4103, "learning_rate": 1.5259210930856423e-06, "epoch": 0.7518511486614772, "percentage": 75.23, "elapsed_time": "4:08:51", "remaining_time": "1:21:56"}
{"current_steps": 496, "total_steps": 658, "loss": 2.4664, "learning_rate": 1.5082564254242583e-06, "epoch": 0.7533700398708942, "percentage": 75.38, "elapsed_time": "4:11:28", "remaining_time": "1:22:08"}
{"current_steps": 497, "total_steps": 658, "loss": 2.3815, "learning_rate": 1.4906764219714537e-06, "epoch": 0.7548889310803114, "percentage": 75.53, "elapsed_time": "4:14:05", "remaining_time": "1:22:18"}
{"current_steps": 498, "total_steps": 658, "loss": 2.3936, "learning_rate": 1.4731815089890795e-06, "epoch": 0.7564078222897285, "percentage": 75.68, "elapsed_time": "4:16:42", "remaining_time": "1:22:28"}
{"current_steps": 499, "total_steps": 658, "loss": 2.4351, "learning_rate": 1.455772110675804e-06, "epoch": 0.7579267134991456, "percentage": 75.84, "elapsed_time": "4:19:20", "remaining_time": "1:22:38"}
{"current_steps": 500, "total_steps": 658, "loss": 2.4531, "learning_rate": 1.438448649156815e-06, "epoch": 0.7594456047085627, "percentage": 75.99, "elapsed_time": "4:21:57", "remaining_time": "1:22:46"}
{"current_steps": 501, "total_steps": 658, "loss": 2.3204, "learning_rate": 1.4212115444736024e-06, "epoch": 0.7609644959179799, "percentage": 76.14, "elapsed_time": "4:24:34", "remaining_time": "1:22:54"}
{"current_steps": 502, "total_steps": 658, "loss": 2.4785, "learning_rate": 1.4040612145737608e-06, "epoch": 0.762483387127397, "percentage": 76.29, "elapsed_time": "4:27:11", "remaining_time": "1:23:01"}
{"current_steps": 503, "total_steps": 658, "loss": 2.4757, "learning_rate": 1.3869980753008537e-06, "epoch": 0.7640022783368141, "percentage": 76.44, "elapsed_time": "4:29:48", "remaining_time": "1:23:08"}
{"current_steps": 504, "total_steps": 658, "loss": 2.3726, "learning_rate": 1.370022540384347e-06, "epoch": 0.7655211695462313, "percentage": 76.6, "elapsed_time": "4:32:25", "remaining_time": "1:23:14"}
{"current_steps": 505, "total_steps": 658, "loss": 2.4188, "learning_rate": 1.353135021429554e-06, "epoch": 0.7670400607556483, "percentage": 76.75, "elapsed_time": "4:35:03", "remaining_time": "1:23:19"}
{"current_steps": 506, "total_steps": 658, "loss": 2.3275, "learning_rate": 1.3363359279076776e-06, "epoch": 0.7685589519650655, "percentage": 76.9, "elapsed_time": "4:37:40", "remaining_time": "1:23:24"}
{"current_steps": 507, "total_steps": 658, "loss": 2.4475, "learning_rate": 1.3196256671458663e-06, "epoch": 0.7700778431744826, "percentage": 77.05, "elapsed_time": "4:40:17", "remaining_time": "1:23:28"}
{"current_steps": 508, "total_steps": 658, "loss": 2.3754, "learning_rate": 1.3030046443173445e-06, "epoch": 0.7715967343838998, "percentage": 77.2, "elapsed_time": "4:42:54", "remaining_time": "1:23:32"}
{"current_steps": 509, "total_steps": 658, "loss": 2.4502, "learning_rate": 1.2864732624315867e-06, "epoch": 0.7731156255933169, "percentage": 77.36, "elapsed_time": "4:45:31", "remaining_time": "1:23:34"}
{"current_steps": 510, "total_steps": 658, "loss": 2.4717, "learning_rate": 1.270031922324546e-06, "epoch": 0.774634516802734, "percentage": 77.51, "elapsed_time": "4:48:08", "remaining_time": "1:23:37"}
{"current_steps": 511, "total_steps": 658, "loss": 2.4426, "learning_rate": 1.2536810226489354e-06, "epoch": 0.7761534080121512, "percentage": 77.66, "elapsed_time": "4:50:46", "remaining_time": "1:23:38"}
{"current_steps": 512, "total_steps": 658, "loss": 2.3612, "learning_rate": 1.237420959864561e-06, "epoch": 0.7776722992215682, "percentage": 77.81, "elapsed_time": "4:53:23", "remaining_time": "1:23:39"}
{"current_steps": 513, "total_steps": 658, "loss": 2.4509, "learning_rate": 1.2212521282287093e-06, "epoch": 0.7791911904309854, "percentage": 77.96, "elapsed_time": "4:56:00", "remaining_time": "1:23:39"}
{"current_steps": 514, "total_steps": 658, "loss": 2.4396, "learning_rate": 1.2051749197865875e-06, "epoch": 0.7807100816404025, "percentage": 78.12, "elapsed_time": "4:58:37", "remaining_time": "1:23:39"}
{"current_steps": 515, "total_steps": 658, "loss": 2.4232, "learning_rate": 1.1891897243618184e-06, "epoch": 0.7822289728498196, "percentage": 78.27, "elapsed_time": "5:01:14", "remaining_time": "1:23:38"}
{"current_steps": 516, "total_steps": 658, "loss": 2.4108, "learning_rate": 1.173296929546987e-06, "epoch": 0.7837478640592368, "percentage": 78.42, "elapsed_time": "5:03:51", "remaining_time": "1:23:37"}
{"current_steps": 517, "total_steps": 658, "loss": 2.4057, "learning_rate": 1.1574969206942443e-06, "epoch": 0.7852667552686539, "percentage": 78.57, "elapsed_time": "5:06:28", "remaining_time": "1:23:35"}
{"current_steps": 518, "total_steps": 658, "loss": 2.4187, "learning_rate": 1.1417900809059623e-06, "epoch": 0.786785646478071, "percentage": 78.72, "elapsed_time": "5:09:05", "remaining_time": "1:23:32"}
{"current_steps": 519, "total_steps": 658, "loss": 2.4451, "learning_rate": 1.1261767910254422e-06, "epoch": 0.7883045376874881, "percentage": 78.88, "elapsed_time": "5:11:43", "remaining_time": "1:23:29"}
{"current_steps": 520, "total_steps": 658, "loss": 2.3739, "learning_rate": 1.1106574296276923e-06, "epoch": 0.7898234288969053, "percentage": 79.03, "elapsed_time": "5:14:20", "remaining_time": "1:23:25"}
{"current_steps": 521, "total_steps": 658, "loss": 2.4306, "learning_rate": 1.095232373010226e-06, "epoch": 0.7913423201063224, "percentage": 79.18, "elapsed_time": "5:16:57", "remaining_time": "1:23:20"}
{"current_steps": 522, "total_steps": 658, "loss": 2.3165, "learning_rate": 1.0799019951839656e-06, "epoch": 0.7928612113157395, "percentage": 79.33, "elapsed_time": "5:19:34", "remaining_time": "1:23:15"}
{"current_steps": 523, "total_steps": 658, "loss": 2.4474, "learning_rate": 1.0646666678641477e-06, "epoch": 0.7943801025251567, "percentage": 79.48, "elapsed_time": "5:22:11", "remaining_time": "1:23:10"}
{"current_steps": 524, "total_steps": 658, "loss": 2.4753, "learning_rate": 1.0495267604613273e-06, "epoch": 0.7958989937345737, "percentage": 79.64, "elapsed_time": "5:24:48", "remaining_time": "1:23:03"}
{"current_steps": 525, "total_steps": 658, "loss": 2.3867, "learning_rate": 1.0344826400724185e-06, "epoch": 0.7974178849439909, "percentage": 79.79, "elapsed_time": "5:27:25", "remaining_time": "1:22:56"}
{"current_steps": 526, "total_steps": 658, "loss": 2.4024, "learning_rate": 1.0195346714717813e-06, "epoch": 0.798936776153408, "percentage": 79.94, "elapsed_time": "5:30:03", "remaining_time": "1:22:49"}
{"current_steps": 527, "total_steps": 658, "loss": 2.4095, "learning_rate": 1.0046832171023952e-06, "epoch": 0.8004556673628251, "percentage": 80.09, "elapsed_time": "5:32:40", "remaining_time": "1:22:41"}
{"current_steps": 528, "total_steps": 658, "loss": 2.4188, "learning_rate": 9.899286370670575e-07, "epoch": 0.8019745585722423, "percentage": 80.24, "elapsed_time": "5:35:17", "remaining_time": "1:22:33"}
{"current_steps": 529, "total_steps": 658, "loss": 2.3859, "learning_rate": 9.752712891196558e-07, "epoch": 0.8034934497816594, "percentage": 80.4, "elapsed_time": "5:37:54", "remaining_time": "1:22:24"}
{"current_steps": 530, "total_steps": 658, "loss": 2.4168, "learning_rate": 9.607115286564972e-07, "epoch": 0.8050123409910765, "percentage": 80.55, "elapsed_time": "5:40:31", "remaining_time": "1:22:14"}
{"current_steps": 531, "total_steps": 658, "loss": 2.4961, "learning_rate": 9.46249708707681e-07, "epoch": 0.8065312322004936, "percentage": 80.7, "elapsed_time": "5:43:08", "remaining_time": "1:22:04"}
{"current_steps": 532, "total_steps": 658, "loss": 2.4079, "learning_rate": 9.318861799285539e-07, "epoch": 0.8080501234099108, "percentage": 80.85, "elapsed_time": "5:45:45", "remaining_time": "1:21:53"}
{"current_steps": 533, "total_steps": 658, "loss": 2.4301, "learning_rate": 9.176212905911946e-07, "epoch": 0.8095690146193278, "percentage": 81.0, "elapsed_time": "5:48:22", "remaining_time": "1:21:42"}
{"current_steps": 534, "total_steps": 658, "loss": 2.3373, "learning_rate": 9.034553865759754e-07, "epoch": 0.811087905828745, "percentage": 81.16, "elapsed_time": "5:50:59", "remaining_time": "1:21:30"}
{"current_steps": 535, "total_steps": 658, "loss": 2.4129, "learning_rate": 8.893888113631732e-07, "epoch": 0.8126067970381622, "percentage": 81.31, "elapsed_time": "5:53:36", "remaining_time": "1:21:17"}
{"current_steps": 536, "total_steps": 658, "loss": 2.4006, "learning_rate": 8.754219060246432e-07, "epoch": 0.8141256882475792, "percentage": 81.46, "elapsed_time": "5:56:13", "remaining_time": "1:21:04"}
{"current_steps": 537, "total_steps": 658, "loss": 2.4266, "learning_rate": 8.615550092155478e-07, "epoch": 0.8156445794569964, "percentage": 81.61, "elapsed_time": "5:58:50", "remaining_time": "1:20:51"}
{"current_steps": 538, "total_steps": 658, "loss": 2.338, "learning_rate": 8.477884571661449e-07, "epoch": 0.8171634706664135, "percentage": 81.76, "elapsed_time": "6:01:27", "remaining_time": "1:20:37"}
{"current_steps": 539, "total_steps": 658, "loss": 2.3338, "learning_rate": 8.341225836736367e-07, "epoch": 0.8186823618758307, "percentage": 81.91, "elapsed_time": "6:04:04", "remaining_time": "1:20:22"}
{"current_steps": 540, "total_steps": 658, "loss": 2.4662, "learning_rate": 8.20557720094074e-07, "epoch": 0.8202012530852477, "percentage": 82.07, "elapsed_time": "6:06:42", "remaining_time": "1:20:07"}
{"current_steps": 541, "total_steps": 658, "loss": 2.4553, "learning_rate": 8.070941953343242e-07, "epoch": 0.8217201442946649, "percentage": 82.22, "elapsed_time": "6:09:19", "remaining_time": "1:19:52"}
{"current_steps": 542, "total_steps": 658, "loss": 2.385, "learning_rate": 7.937323358440935e-07, "epoch": 0.8232390355040821, "percentage": 82.37, "elapsed_time": "6:11:56", "remaining_time": "1:19:36"}
{"current_steps": 543, "total_steps": 658, "loss": 2.3504, "learning_rate": 7.804724656080182e-07, "epoch": 0.8247579267134991, "percentage": 82.52, "elapsed_time": "6:14:33", "remaining_time": "1:19:19"}
{"current_steps": 544, "total_steps": 658, "loss": 2.4097, "learning_rate": 7.673149061377966e-07, "epoch": 0.8262768179229163, "percentage": 82.67, "elapsed_time": "6:17:10", "remaining_time": "1:19:02"}
{"current_steps": 545, "total_steps": 658, "loss": 2.3469, "learning_rate": 7.542599764644049e-07, "epoch": 0.8277957091323334, "percentage": 82.83, "elapsed_time": "6:19:47", "remaining_time": "1:18:44"}
{"current_steps": 546, "total_steps": 658, "loss": 2.3823, "learning_rate": 7.413079931303591e-07, "epoch": 0.8293146003417505, "percentage": 82.98, "elapsed_time": "6:22:24", "remaining_time": "1:18:26"}
{"current_steps": 547, "total_steps": 658, "loss": 2.4564, "learning_rate": 7.284592701820325e-07, "epoch": 0.8308334915511677, "percentage": 83.13, "elapsed_time": "6:25:01", "remaining_time": "1:18:07"}
{"current_steps": 548, "total_steps": 658, "loss": 2.4415, "learning_rate": 7.157141191620548e-07, "epoch": 0.8323523827605848, "percentage": 83.28, "elapsed_time": "6:27:38", "remaining_time": "1:17:48"}
{"current_steps": 549, "total_steps": 658, "loss": 2.4262, "learning_rate": 7.030728491017408e-07, "epoch": 0.8338712739700019, "percentage": 83.43, "elapsed_time": "6:30:15", "remaining_time": "1:17:28"}
{"current_steps": 550, "total_steps": 658, "loss": 2.3055, "learning_rate": 6.905357665136142e-07, "epoch": 0.835390165179419, "percentage": 83.59, "elapsed_time": "6:32:52", "remaining_time": "1:17:08"}
{"current_steps": 551, "total_steps": 658, "loss": 2.5036, "learning_rate": 6.781031753839662e-07, "epoch": 0.8369090563888362, "percentage": 83.74, "elapsed_time": "6:35:29", "remaining_time": "1:16:48"}
{"current_steps": 552, "total_steps": 658, "loss": 2.3845, "learning_rate": 6.657753771654812e-07, "epoch": 0.8384279475982532, "percentage": 83.89, "elapsed_time": "6:38:06", "remaining_time": "1:16:26"}
{"current_steps": 553, "total_steps": 658, "loss": 2.3961, "learning_rate": 6.535526707699408e-07, "epoch": 0.8399468388076704, "percentage": 84.04, "elapsed_time": "6:40:43", "remaining_time": "1:16:05"}
{"current_steps": 554, "total_steps": 658, "loss": 2.4355, "learning_rate": 6.414353525609628e-07, "epoch": 0.8414657300170876, "percentage": 84.19, "elapsed_time": "6:43:20", "remaining_time": "1:15:43"}
{"current_steps": 555, "total_steps": 658, "loss": 2.4291, "learning_rate": 6.294237163468231e-07, "epoch": 0.8429846212265046, "percentage": 84.35, "elapsed_time": "6:45:57", "remaining_time": "1:15:20"}
{"current_steps": 556, "total_steps": 658, "loss": 2.4261, "learning_rate": 6.175180533733277e-07, "epoch": 0.8445035124359218, "percentage": 84.5, "elapsed_time": "6:48:35", "remaining_time": "1:14:57"}
{"current_steps": 557, "total_steps": 658, "loss": 2.4062, "learning_rate": 6.057186523167529e-07, "epoch": 0.8460224036453389, "percentage": 84.65, "elapsed_time": "6:51:12", "remaining_time": "1:14:33"}
{"current_steps": 558, "total_steps": 658, "loss": 2.4546, "learning_rate": 5.940257992768456e-07, "epoch": 0.847541294854756, "percentage": 84.8, "elapsed_time": "6:53:49", "remaining_time": "1:14:09"}
{"current_steps": 559, "total_steps": 658, "loss": 2.4496, "learning_rate": 5.824397777698859e-07, "epoch": 0.8490601860641731, "percentage": 84.95, "elapsed_time": "6:56:26", "remaining_time": "1:13:45"}
{"current_steps": 560, "total_steps": 658, "loss": 2.3831, "learning_rate": 5.709608687218116e-07, "epoch": 0.8505790772735903, "percentage": 85.11, "elapsed_time": "6:59:03", "remaining_time": "1:13:20"}
{"current_steps": 561, "total_steps": 658, "loss": 2.4172, "learning_rate": 5.595893504614097e-07, "epoch": 0.8520979684830075, "percentage": 85.26, "elapsed_time": "7:01:40", "remaining_time": "1:12:54"}
{"current_steps": 562, "total_steps": 658, "loss": 2.4194, "learning_rate": 5.483254987135644e-07, "epoch": 0.8536168596924245, "percentage": 85.41, "elapsed_time": "7:04:17", "remaining_time": "1:12:28"}
{"current_steps": 563, "total_steps": 658, "loss": 2.3656, "learning_rate": 5.371695865925736e-07, "epoch": 0.8551357509018417, "percentage": 85.56, "elapsed_time": "7:06:55", "remaining_time": "1:12:02"}
{"current_steps": 564, "total_steps": 658, "loss": 2.3516, "learning_rate": 5.261218845955246e-07, "epoch": 0.8566546421112587, "percentage": 85.71, "elapsed_time": "7:09:32", "remaining_time": "1:11:35"}
{"current_steps": 565, "total_steps": 658, "loss": 2.4581, "learning_rate": 5.151826605957394e-07, "epoch": 0.8581735333206759, "percentage": 85.87, "elapsed_time": "7:12:09", "remaining_time": "1:11:08"}
{"current_steps": 566, "total_steps": 658, "loss": 2.4911, "learning_rate": 5.043521798362755e-07, "epoch": 0.859692424530093, "percentage": 86.02, "elapsed_time": "7:14:46", "remaining_time": "1:10:40"}
{"current_steps": 567, "total_steps": 658, "loss": 2.4658, "learning_rate": 4.936307049234956e-07, "epoch": 0.8612113157395102, "percentage": 86.17, "elapsed_time": "7:17:23", "remaining_time": "1:10:11"}
{"current_steps": 568, "total_steps": 658, "loss": 2.4005, "learning_rate": 4.830184958207007e-07, "epoch": 0.8627302069489273, "percentage": 86.32, "elapsed_time": "7:20:00", "remaining_time": "1:09:43"}
{"current_steps": 569, "total_steps": 658, "loss": 2.4644, "learning_rate": 4.725158098418309e-07, "epoch": 0.8642490981583444, "percentage": 86.47, "elapsed_time": "7:22:37", "remaining_time": "1:09:14"}
{"current_steps": 570, "total_steps": 658, "loss": 2.2967, "learning_rate": 4.6212290164521554e-07, "epoch": 0.8657679893677616, "percentage": 86.63, "elapsed_time": "7:25:15", "remaining_time": "1:08:44"}
{"current_steps": 571, "total_steps": 658, "loss": 2.3816, "learning_rate": 4.5184002322740784e-07, "epoch": 0.8672868805771786, "percentage": 86.78, "elapsed_time": "7:27:52", "remaining_time": "1:08:14"}
{"current_steps": 572, "total_steps": 658, "loss": 2.4745, "learning_rate": 4.4166742391707593e-07, "epoch": 0.8688057717865958, "percentage": 86.93, "elapsed_time": "7:30:29", "remaining_time": "1:07:43"}
{"current_steps": 573, "total_steps": 658, "loss": 2.4481, "learning_rate": 4.316053503689466e-07, "epoch": 0.870324662996013, "percentage": 87.08, "elapsed_time": "7:33:06", "remaining_time": "1:07:12"}
{"current_steps": 574, "total_steps": 658, "loss": 2.4813, "learning_rate": 4.2165404655783836e-07, "epoch": 0.87184355420543, "percentage": 87.23, "elapsed_time": "7:35:43", "remaining_time": "1:06:41"}
{"current_steps": 575, "total_steps": 658, "loss": 2.4648, "learning_rate": 4.1181375377273237e-07, "epoch": 0.8733624454148472, "percentage": 87.39, "elapsed_time": "7:38:20", "remaining_time": "1:06:09"}
{"current_steps": 576, "total_steps": 658, "loss": 2.5166, "learning_rate": 4.020847106109349e-07, "epoch": 0.8748813366242643, "percentage": 87.54, "elapsed_time": "7:40:58", "remaining_time": "1:05:37"}
{"current_steps": 577, "total_steps": 658, "loss": 2.3706, "learning_rate": 3.9246715297228176e-07, "epoch": 0.8764002278336814, "percentage": 87.69, "elapsed_time": "7:43:35", "remaining_time": "1:05:04"}
{"current_steps": 578, "total_steps": 658, "loss": 2.4946, "learning_rate": 3.829613140534222e-07, "epoch": 0.8779191190430985, "percentage": 87.84, "elapsed_time": "7:46:12", "remaining_time": "1:04:31"}
{"current_steps": 579, "total_steps": 658, "loss": 2.4344, "learning_rate": 3.7356742434216775e-07, "epoch": 0.8794380102525157, "percentage": 87.99, "elapsed_time": "7:48:49", "remaining_time": "1:03:58"}
{"current_steps": 580, "total_steps": 658, "loss": 2.4431, "learning_rate": 3.642857116118986e-07, "epoch": 0.8809569014619328, "percentage": 88.15, "elapsed_time": "7:51:26", "remaining_time": "1:03:24"}
{"current_steps": 581, "total_steps": 658, "loss": 2.3728, "learning_rate": 3.5511640091604293e-07, "epoch": 0.8824757926713499, "percentage": 88.3, "elapsed_time": "7:54:03", "remaining_time": "1:02:49"}
{"current_steps": 582, "total_steps": 658, "loss": 2.358, "learning_rate": 3.4605971458262e-07, "epoch": 0.8839946838807671, "percentage": 88.45, "elapsed_time": "7:56:40", "remaining_time": "1:02:14"}
{"current_steps": 583, "total_steps": 658, "loss": 2.4764, "learning_rate": 3.371158722088497e-07, "epoch": 0.8855135750901841, "percentage": 88.6, "elapsed_time": "7:59:17", "remaining_time": "1:01:39"}
{"current_steps": 584, "total_steps": 658, "loss": 2.4414, "learning_rate": 3.2828509065582713e-07, "epoch": 0.8870324662996013, "percentage": 88.75, "elapsed_time": "8:01:54", "remaining_time": "1:01:03"}
{"current_steps": 585, "total_steps": 658, "loss": 2.4016, "learning_rate": 3.195675840432655e-07, "epoch": 0.8885513575090184, "percentage": 88.91, "elapsed_time": "8:04:32", "remaining_time": "1:00:27"}
{"current_steps": 586, "total_steps": 658, "loss": 2.4212, "learning_rate": 3.109635637443026e-07, "epoch": 0.8900702487184355, "percentage": 89.06, "elapsed_time": "8:07:09", "remaining_time": "0:59:51"}
{"current_steps": 587, "total_steps": 658, "loss": 2.2654, "learning_rate": 3.02473238380378e-07, "epoch": 0.8915891399278527, "percentage": 89.21, "elapsed_time": "8:09:46", "remaining_time": "0:59:14"}
{"current_steps": 588, "total_steps": 658, "loss": 2.2745, "learning_rate": 2.9409681381617315e-07, "epoch": 0.8931080311372698, "percentage": 89.36, "elapsed_time": "8:12:23", "remaining_time": "0:58:37"}
{"current_steps": 589, "total_steps": 658, "loss": 2.3712, "learning_rate": 2.858344931546181e-07, "epoch": 0.894626922346687, "percentage": 89.51, "elapsed_time": "8:15:00", "remaining_time": "0:57:59"}
{"current_steps": 590, "total_steps": 658, "loss": 2.4357, "learning_rate": 2.776864767319731e-07, "epoch": 0.896145813556104, "percentage": 89.67, "elapsed_time": "8:17:37", "remaining_time": "0:57:21"}
{"current_steps": 591, "total_steps": 658, "loss": 2.4577, "learning_rate": 2.696529621129618e-07, "epoch": 0.8976647047655212, "percentage": 89.82, "elapsed_time": "8:20:15", "remaining_time": "0:56:42"}
{"current_steps": 592, "total_steps": 658, "loss": 2.3876, "learning_rate": 2.617341440859883e-07, "epoch": 0.8991835959749382, "percentage": 89.97, "elapsed_time": "8:22:52", "remaining_time": "0:56:03"}
{"current_steps": 593, "total_steps": 658, "loss": 2.3993, "learning_rate": 2.539302146584116e-07, "epoch": 0.9007024871843554, "percentage": 90.12, "elapsed_time": "8:25:29", "remaining_time": "0:55:24"}
{"current_steps": 594, "total_steps": 658, "loss": 2.3749, "learning_rate": 2.4624136305188895e-07, "epoch": 0.9022213783937726, "percentage": 90.27, "elapsed_time": "8:28:06", "remaining_time": "0:54:44"}
{"current_steps": 595, "total_steps": 658, "loss": 2.4471, "learning_rate": 2.3866777569779234e-07, "epoch": 0.9037402696031896, "percentage": 90.43, "elapsed_time": "8:30:43", "remaining_time": "0:54:04"}
{"current_steps": 596, "total_steps": 658, "loss": 2.3111, "learning_rate": 2.3120963623267822e-07, "epoch": 0.9052591608126068, "percentage": 90.58, "elapsed_time": "8:33:21", "remaining_time": "0:53:24"}
{"current_steps": 597, "total_steps": 658, "loss": 2.3943, "learning_rate": 2.2386712549384848e-07, "epoch": 0.9067780520220239, "percentage": 90.73, "elapsed_time": "8:35:58", "remaining_time": "0:52:43"}
{"current_steps": 598, "total_steps": 658, "loss": 2.4127, "learning_rate": 2.1664042151495424e-07, "epoch": 0.9082969432314411, "percentage": 90.88, "elapsed_time": "8:38:35", "remaining_time": "0:52:01"}
{"current_steps": 599, "total_steps": 658, "loss": 2.5428, "learning_rate": 2.095296995216828e-07, "epoch": 0.9098158344408582, "percentage": 91.03, "elapsed_time": "8:41:12", "remaining_time": "0:51:20"}
{"current_steps": 600, "total_steps": 658, "loss": 2.4433, "learning_rate": 2.0253513192751374e-07, "epoch": 0.9113347256502753, "percentage": 91.19, "elapsed_time": "8:43:49", "remaining_time": "0:50:38"}
{"current_steps": 601, "total_steps": 658, "loss": 2.4961, "learning_rate": 1.9565688832952846e-07, "epoch": 0.9128536168596925, "percentage": 91.34, "elapsed_time": "8:47:11", "remaining_time": "0:50:00"}
{"current_steps": 602, "total_steps": 658, "loss": 2.4045, "learning_rate": 1.8889513550430892e-07, "epoch": 0.9143725080691095, "percentage": 91.49, "elapsed_time": "8:49:48", "remaining_time": "0:49:17"}
{"current_steps": 603, "total_steps": 658, "loss": 2.4311, "learning_rate": 1.8225003740388546e-07, "epoch": 0.9158913992785267, "percentage": 91.64, "elapsed_time": "8:52:26", "remaining_time": "0:48:33"}
{"current_steps": 604, "total_steps": 658, "loss": 2.4039, "learning_rate": 1.7572175515176538e-07, "epoch": 0.9174102904879438, "percentage": 91.79, "elapsed_time": "8:55:03", "remaining_time": "0:47:50"}
{"current_steps": 605, "total_steps": 658, "loss": 2.4362, "learning_rate": 1.693104470390261e-07, "epoch": 0.9189291816973609, "percentage": 91.95, "elapsed_time": "8:57:40", "remaining_time": "0:47:06"}
{"current_steps": 606, "total_steps": 658, "loss": 2.3737, "learning_rate": 1.6301626852047504e-07, "epoch": 0.9204480729067781, "percentage": 92.1, "elapsed_time": "9:00:18", "remaining_time": "0:46:21"}
{"current_steps": 607, "total_steps": 658, "loss": 2.3526, "learning_rate": 1.5683937221088242e-07, "epoch": 0.9219669641161952, "percentage": 92.25, "elapsed_time": "9:02:55", "remaining_time": "0:45:36"}
{"current_steps": 608, "total_steps": 658, "loss": 2.4345, "learning_rate": 1.5077990788127993e-07, "epoch": 0.9234858553256123, "percentage": 92.4, "elapsed_time": "9:05:32", "remaining_time": "0:44:51"}
{"current_steps": 609, "total_steps": 658, "loss": 2.359, "learning_rate": 1.448380224553303e-07, "epoch": 0.9250047465350294, "percentage": 92.55, "elapsed_time": "9:08:10", "remaining_time": "0:44:06"}
{"current_steps": 610, "total_steps": 658, "loss": 2.4759, "learning_rate": 1.3901386000576112e-07, "epoch": 0.9265236377444466, "percentage": 92.71, "elapsed_time": "9:10:47", "remaining_time": "0:43:20"}
{"current_steps": 611, "total_steps": 658, "loss": 2.4237, "learning_rate": 1.3330756175087778e-07, "epoch": 0.9280425289538636, "percentage": 92.86, "elapsed_time": "9:13:24", "remaining_time": "0:42:34"}
{"current_steps": 612, "total_steps": 658, "loss": 2.411, "learning_rate": 1.2771926605113283e-07, "epoch": 0.9295614201632808, "percentage": 93.01, "elapsed_time": "9:16:02", "remaining_time": "0:41:47"}
{"current_steps": 613, "total_steps": 658, "loss": 2.495, "learning_rate": 1.2224910840577642e-07, "epoch": 0.931080311372698, "percentage": 93.16, "elapsed_time": "9:18:39", "remaining_time": "0:41:00"}
{"current_steps": 614, "total_steps": 658, "loss": 2.4696, "learning_rate": 1.1689722144956672e-07, "epoch": 0.932599202582115, "percentage": 93.31, "elapsed_time": "9:21:16", "remaining_time": "0:40:13"}
{"current_steps": 615, "total_steps": 658, "loss": 2.4935, "learning_rate": 1.1166373494955696e-07, "epoch": 0.9341180937915322, "percentage": 93.47, "elapsed_time": "9:23:54", "remaining_time": "0:39:25"}
{"current_steps": 616, "total_steps": 658, "loss": 2.4556, "learning_rate": 1.06548775801949e-07, "epoch": 0.9356369850009493, "percentage": 93.62, "elapsed_time": "9:26:31", "remaining_time": "0:38:37"}
{"current_steps": 617, "total_steps": 658, "loss": 2.4549, "learning_rate": 1.0155246802901198e-07, "epoch": 0.9371558762103664, "percentage": 93.77, "elapsed_time": "9:29:08", "remaining_time": "0:37:49"}
{"current_steps": 618, "total_steps": 658, "loss": 2.3727, "learning_rate": 9.667493277608187e-08, "epoch": 0.9386747674197835, "percentage": 93.92, "elapsed_time": "9:31:45", "remaining_time": "0:37:00"}
{"current_steps": 619, "total_steps": 658, "loss": 2.4479, "learning_rate": 9.191628830861832e-08, "epoch": 0.9401936586292007, "percentage": 94.07, "elapsed_time": "9:34:23", "remaining_time": "0:36:11"}
{"current_steps": 620, "total_steps": 658, "loss": 2.4592, "learning_rate": 8.727665000934027e-08, "epoch": 0.9417125498386179, "percentage": 94.22, "elapsed_time": "9:37:00", "remaining_time": "0:35:21"}
{"current_steps": 621, "total_steps": 658, "loss": 2.3427, "learning_rate": 8.275613037542873e-08, "epoch": 0.9432314410480349, "percentage": 94.38, "elapsed_time": "9:39:37", "remaining_time": "0:34:32"}
{"current_steps": 622, "total_steps": 658, "loss": 2.3793, "learning_rate": 7.835483901579454e-08, "epoch": 0.9447503322574521, "percentage": 94.53, "elapsed_time": "9:42:15", "remaining_time": "0:33:41"}
{"current_steps": 623, "total_steps": 658, "loss": 2.3967, "learning_rate": 7.407288264842772e-08, "epoch": 0.9462692234668691, "percentage": 94.68, "elapsed_time": "9:44:52", "remaining_time": "0:32:51"}
{"current_steps": 624, "total_steps": 658, "loss": 2.3673, "learning_rate": 6.991036509780391e-08, "epoch": 0.9477881146762863, "percentage": 94.83, "elapsed_time": "9:47:29", "remaining_time": "0:32:00"}
{"current_steps": 625, "total_steps": 658, "loss": 2.3546, "learning_rate": 6.58673872923693e-08, "epoch": 0.9493070058857034, "percentage": 94.98, "elapsed_time": "9:50:06", "remaining_time": "0:31:09"}
{"current_steps": 626, "total_steps": 658, "loss": 2.4605, "learning_rate": 6.194404726209358e-08, "epoch": 0.9508258970951206, "percentage": 95.14, "elapsed_time": "9:52:43", "remaining_time": "0:30:17"}
{"current_steps": 627, "total_steps": 658, "loss": 2.4121, "learning_rate": 5.8140440136091326e-08, "epoch": 0.9523447883045377, "percentage": 95.29, "elapsed_time": "9:55:20", "remaining_time": "0:29:26"}
{"current_steps": 628, "total_steps": 658, "loss": 2.3989, "learning_rate": 5.445665814031942e-08, "epoch": 0.9538636795139548, "percentage": 95.44, "elapsed_time": "9:57:57", "remaining_time": "0:28:33"}
{"current_steps": 629, "total_steps": 658, "loss": 2.4139, "learning_rate": 5.089279059533658e-08, "epoch": 0.955382570723372, "percentage": 95.59, "elapsed_time": "10:00:34", "remaining_time": "0:27:41"}
{"current_steps": 630, "total_steps": 658, "loss": 2.3641, "learning_rate": 4.744892391413791e-08, "epoch": 0.956901461932789, "percentage": 95.74, "elapsed_time": "10:03:11", "remaining_time": "0:26:48"}
{"current_steps": 631, "total_steps": 658, "loss": 2.445, "learning_rate": 4.412514160006376e-08, "epoch": 0.9584203531422062, "percentage": 95.9, "elapsed_time": "10:05:48", "remaining_time": "0:25:55"}
{"current_steps": 632, "total_steps": 658, "loss": 2.4109, "learning_rate": 4.092152424477025e-08, "epoch": 0.9599392443516234, "percentage": 96.05, "elapsed_time": "10:08:25", "remaining_time": "0:25:01"}
{"current_steps": 633, "total_steps": 658, "loss": 2.4756, "learning_rate": 3.7838149526277514e-08, "epoch": 0.9614581355610404, "percentage": 96.2, "elapsed_time": "10:11:02", "remaining_time": "0:24:07"}
{"current_steps": 634, "total_steps": 658, "loss": 2.3943, "learning_rate": 3.487509220708563e-08, "epoch": 0.9629770267704576, "percentage": 96.35, "elapsed_time": "10:13:39", "remaining_time": "0:23:13"}
{"current_steps": 635, "total_steps": 658, "loss": 2.4921, "learning_rate": 3.2032424132362736e-08, "epoch": 0.9644959179798747, "percentage": 96.5, "elapsed_time": "10:16:16", "remaining_time": "0:22:19"}
{"current_steps": 636, "total_steps": 658, "loss": 2.4052, "learning_rate": 2.9310214228202016e-08, "epoch": 0.9660148091892918, "percentage": 96.66, "elapsed_time": "10:18:53", "remaining_time": "0:21:24"}
{"current_steps": 637, "total_steps": 658, "loss": 2.4681, "learning_rate": 2.6708528499950758e-08, "epoch": 0.9675337003987089, "percentage": 96.81, "elapsed_time": "10:21:30", "remaining_time": "0:20:29"}
{"current_steps": 638, "total_steps": 658, "loss": 2.378, "learning_rate": 2.4227430030609455e-08, "epoch": 0.9690525916081261, "percentage": 96.96, "elapsed_time": "10:24:07", "remaining_time": "0:19:33"}
{"current_steps": 639, "total_steps": 658, "loss": 2.4043, "learning_rate": 2.1866978979303567e-08, "epoch": 0.9705714828175432, "percentage": 97.11, "elapsed_time": "10:26:44", "remaining_time": "0:18:38"}
{"current_steps": 640, "total_steps": 658, "loss": 2.4691, "learning_rate": 1.962723257982302e-08, "epoch": 0.9720903740269603, "percentage": 97.26, "elapsed_time": "10:29:21", "remaining_time": "0:17:42"}
{"current_steps": 641, "total_steps": 658, "loss": 2.4154, "learning_rate": 1.7508245139236658e-08, "epoch": 0.9736092652363775, "percentage": 97.42, "elapsed_time": "10:31:58", "remaining_time": "0:16:45"}
{"current_steps": 642, "total_steps": 658, "loss": 2.4022, "learning_rate": 1.5510068036573288e-08, "epoch": 0.9751281564457945, "percentage": 97.57, "elapsed_time": "10:34:35", "remaining_time": "0:15:48"}
{"current_steps": 643, "total_steps": 658, "loss": 2.4114, "learning_rate": 1.3632749721577132e-08, "epoch": 0.9766470476552117, "percentage": 97.72, "elapsed_time": "10:37:12", "remaining_time": "0:14:51"}
{"current_steps": 644, "total_steps": 658, "loss": 2.4238, "learning_rate": 1.1876335713532638e-08, "epoch": 0.9781659388646288, "percentage": 97.87, "elapsed_time": "10:39:49", "remaining_time": "0:13:54"}
{"current_steps": 645, "total_steps": 658, "loss": 2.3759, "learning_rate": 1.024086860016149e-08, "epoch": 0.9796848300740459, "percentage": 98.02, "elapsed_time": "10:42:26", "remaining_time": "0:12:56"}
{"current_steps": 646, "total_steps": 658, "loss": 2.4658, "learning_rate": 8.726388036587874e-09, "epoch": 0.9812037212834631, "percentage": 98.18, "elapsed_time": "10:45:03", "remaining_time": "0:11:58"}
{"current_steps": 647, "total_steps": 658, "loss": 2.424, "learning_rate": 7.332930744380906e-09, "epoch": 0.9827226124928802, "percentage": 98.33, "elapsed_time": "10:47:40", "remaining_time": "0:11:00"}
{"current_steps": 648, "total_steps": 658, "loss": 2.4868, "learning_rate": 6.060530510659246e-09, "epoch": 0.9842415037022973, "percentage": 98.48, "elapsed_time": "10:50:17", "remaining_time": "0:10:02"}
{"current_steps": 649, "total_steps": 658, "loss": 2.5088, "learning_rate": 4.909218187276743e-09, "epoch": 0.9857603949117144, "percentage": 98.63, "elapsed_time": "10:52:54", "remaining_time": "0:09:03"}
{"current_steps": 650, "total_steps": 658, "loss": 2.4717, "learning_rate": 3.8790216900702615e-09, "epoch": 0.9872792861211316, "percentage": 98.78, "elapsed_time": "10:55:31", "remaining_time": "0:08:04"}
{"current_steps": 651, "total_steps": 658, "loss": 2.4196, "learning_rate": 2.9699659981863306e-09, "epoch": 0.9887981773305486, "percentage": 98.94, "elapsed_time": "10:58:08", "remaining_time": "0:07:04"}
{"current_steps": 652, "total_steps": 658, "loss": 2.4242, "learning_rate": 2.182073153471631e-09, "epoch": 0.9903170685399658, "percentage": 99.09, "elapsed_time": "11:00:45", "remaining_time": "0:06:04"}
{"current_steps": 653, "total_steps": 658, "loss": 2.3848, "learning_rate": 1.5153622599428652e-09, "epoch": 0.991835959749383, "percentage": 99.24, "elapsed_time": "11:03:22", "remaining_time": "0:05:04"}
{"current_steps": 654, "total_steps": 658, "loss": 2.4641, "learning_rate": 9.698494833199068e-10, "epoch": 0.9933548509588, "percentage": 99.39, "elapsed_time": "11:05:59", "remaining_time": "0:04:04"}
{"current_steps": 655, "total_steps": 658, "loss": 2.4073, "learning_rate": 5.455480506355582e-10, "epoch": 0.9948737421682172, "percentage": 99.54, "elapsed_time": "11:08:36", "remaining_time": "0:03:03"}
{"current_steps": 656, "total_steps": 658, "loss": 2.4084, "learning_rate": 2.4246824991525085e-10, "epoch": 0.9963926333776343, "percentage": 99.7, "elapsed_time": "11:11:13", "remaining_time": "0:02:02"}
{"current_steps": 657, "total_steps": 658, "loss": 2.4904, "learning_rate": 6.061742992613529e-11, "epoch": 0.9979115245870515, "percentage": 99.85, "elapsed_time": "11:13:50", "remaining_time": "0:01:01"}
{"current_steps": 658, "total_steps": 658, "loss": 2.4394, "learning_rate": 0.0, "epoch": 0.9994304157964686, "percentage": 100.0, "elapsed_time": "11:16:27", "remaining_time": "0:00:00"}
{"current_steps": 658, "total_steps": 658, "epoch": 0.9994304157964686, "percentage": 100.0, "elapsed_time": "11:16:27", "remaining_time": "0:00:00"}