Update README.md
Browse files
README.md
CHANGED
@@ -32,38 +32,53 @@ We continue to expand [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-lla
|
|
32 |
|
33 |
## How to Get Started with the Model
|
34 |
|
|
|
|
|
35 |
```python
|
36 |
import torch
|
37 |
import torchaudio
|
38 |
from encodec import EncodecModel
|
39 |
from encodec.utils import convert_audio
|
40 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
41 |
|
42 |
-
# Audio to Sound Tokens
|
43 |
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
|
|
|
44 |
model = EncodecModel.encodec_model_24khz()
|
45 |
model.set_target_bandwidth(target_bandwidth)
|
46 |
model.to(device)
|
47 |
|
|
|
48 |
wav, sr = torchaudio.load(audio_path)
|
49 |
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
50 |
wav = wav.unsqueeze(0).to(device)
|
51 |
|
|
|
52 |
with torch.no_grad():
|
53 |
encoded_frames = model.encode(wav)
|
54 |
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
|
55 |
|
|
|
56 |
audio_code1, audio_code2 = codes[0][0], codes[0][1]
|
57 |
flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
|
58 |
|
|
|
59 |
result = ''.join(f'<|sound_{num}|>' for num in flatten_tokens)
|
60 |
return f'<|sound_start|>{result}<|sound_end|>'
|
61 |
|
62 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def setup_pipeline(model_path, use_4bit=True):
|
64 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
65 |
|
66 |
model_kwargs = {"device_map": "auto"}
|
|
|
67 |
if use_4bit:
|
68 |
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
69 |
load_in_4bit=True,
|
@@ -73,9 +88,9 @@ def setup_pipeline(model_path, use_4bit=True):
|
|
73 |
)
|
74 |
|
75 |
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
|
|
76 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
77 |
|
78 |
-
# Text Generation
|
79 |
def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
|
80 |
generation_args = {
|
81 |
"max_new_tokens": max_new_tokens,
|
@@ -83,26 +98,18 @@ def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=
|
|
83 |
"temperature": temperature,
|
84 |
"do_sample": do_sample,
|
85 |
}
|
|
|
86 |
output = pipe(messages, **generation_args)
|
87 |
return output[0]['generated_text']
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Generate text
|
98 |
-
messages = [{"role": "user", "content": sound_tokens}]
|
99 |
-
return generate_text(pipe, messages)
|
100 |
-
|
101 |
-
# Usage example
|
102 |
-
audio_path = "/path/to/your/audio/file"
|
103 |
-
model_path = "jan-hq/Jan-Llama3-0708"
|
104 |
-
|
105 |
-
generated_text = audio_to_text(audio_path, model_path)
|
106 |
```
|
107 |
|
108 |
## Training process
|
|
|
32 |
|
33 |
## How to Get Started with the Model
|
34 |
|
35 |
+
First, we need to convert the audio file to sound tokens
|
36 |
+
|
37 |
```python
|
38 |
import torch
|
39 |
import torchaudio
|
40 |
from encodec import EncodecModel
|
41 |
from encodec.utils import convert_audio
|
|
|
42 |
|
|
|
43 |
def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device="cuda"):
|
44 |
+
# Initialize Encodec
|
45 |
model = EncodecModel.encodec_model_24khz()
|
46 |
model.set_target_bandwidth(target_bandwidth)
|
47 |
model.to(device)
|
48 |
|
49 |
+
# Load and preprocess audio
|
50 |
wav, sr = torchaudio.load(audio_path)
|
51 |
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
52 |
wav = wav.unsqueeze(0).to(device)
|
53 |
|
54 |
+
# Encode audio
|
55 |
with torch.no_grad():
|
56 |
encoded_frames = model.encode(wav)
|
57 |
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1)
|
58 |
|
59 |
+
# Flatten codes
|
60 |
audio_code1, audio_code2 = codes[0][0], codes[0][1]
|
61 |
flatten_tokens = torch.stack((audio_code1, audio_code2), dim=1).flatten().tolist()
|
62 |
|
63 |
+
# Convert to sound tokens
|
64 |
result = ''.join(f'<|sound_{num}|>' for num in flatten_tokens)
|
65 |
return f'<|sound_start|>{result}<|sound_end|>'
|
66 |
|
67 |
+
# Usage
|
68 |
+
sound_tokens = audio_to_sound_tokens("/path/to/your/audio/file")
|
69 |
+
```
|
70 |
+
|
71 |
+
Then, we can inference the model the same as any other LLM.
|
72 |
+
|
73 |
+
```python
|
74 |
+
import torch
|
75 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
|
76 |
+
|
77 |
def setup_pipeline(model_path, use_4bit=True):
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
79 |
|
80 |
model_kwargs = {"device_map": "auto"}
|
81 |
+
|
82 |
if use_4bit:
|
83 |
model_kwargs["quantization_config"] = BitsAndBytesConfig(
|
84 |
load_in_4bit=True,
|
|
|
88 |
)
|
89 |
|
90 |
model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs)
|
91 |
+
|
92 |
return pipeline("text-generation", model=model, tokenizer=tokenizer)
|
93 |
|
|
|
94 |
def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False):
|
95 |
generation_args = {
|
96 |
"max_new_tokens": max_new_tokens,
|
|
|
98 |
"temperature": temperature,
|
99 |
"do_sample": do_sample,
|
100 |
}
|
101 |
+
|
102 |
output = pipe(messages, **generation_args)
|
103 |
return output[0]['generated_text']
|
104 |
|
105 |
+
# Usage
|
106 |
+
llm_path = "jan-hq/Jan-Llama3-0708"
|
107 |
+
pipe = setup_pipeline(llm_path, use_4bit=True)
|
108 |
+
messages = [
|
109 |
+
{"role": "user", "content": sound_tokens},
|
110 |
+
]
|
111 |
+
generated_text = generate_text(pipe, messages)
|
112 |
+
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
```
|
114 |
|
115 |
## Training process
|