File size: 25,292 Bytes
c053319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-11 12:17:47,458 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,460 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-11 12:17:47,460 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,461 MultiCorpus: 1085 train + 148 dev + 364 test sentences
 - NER_HIPE_2022 Corpus: 1085 train + 148 dev + 364 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/sv/with_doc_seperator
2023-10-11 12:17:47,461 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,461 Train:  1085 sentences
2023-10-11 12:17:47,461         (train_with_dev=False, train_with_test=False)
2023-10-11 12:17:47,461 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,461 Training Params:
2023-10-11 12:17:47,461  - learning_rate: "0.00016" 
2023-10-11 12:17:47,461  - mini_batch_size: "4"
2023-10-11 12:17:47,461  - max_epochs: "10"
2023-10-11 12:17:47,461  - shuffle: "True"
2023-10-11 12:17:47,461 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,461 Plugins:
2023-10-11 12:17:47,461  - TensorboardLogger
2023-10-11 12:17:47,462  - LinearScheduler | warmup_fraction: '0.1'
2023-10-11 12:17:47,462 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,462 Final evaluation on model from best epoch (best-model.pt)
2023-10-11 12:17:47,462  - metric: "('micro avg', 'f1-score')"
2023-10-11 12:17:47,462 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,462 Computation:
2023-10-11 12:17:47,462  - compute on device: cuda:0
2023-10-11 12:17:47,462  - embedding storage: none
2023-10-11 12:17:47,462 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,462 Model training base path: "hmbench-newseye/sv-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4"
2023-10-11 12:17:47,462 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,462 ----------------------------------------------------------------------------------------------------
2023-10-11 12:17:47,462 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-11 12:17:57,185 epoch 1 - iter 27/272 - loss 2.83784856 - time (sec): 9.72 - samples/sec: 573.53 - lr: 0.000015 - momentum: 0.000000
2023-10-11 12:18:07,237 epoch 1 - iter 54/272 - loss 2.83077250 - time (sec): 19.77 - samples/sec: 575.99 - lr: 0.000031 - momentum: 0.000000
2023-10-11 12:18:16,704 epoch 1 - iter 81/272 - loss 2.80770322 - time (sec): 29.24 - samples/sec: 570.04 - lr: 0.000047 - momentum: 0.000000
2023-10-11 12:18:25,982 epoch 1 - iter 108/272 - loss 2.75243362 - time (sec): 38.52 - samples/sec: 565.04 - lr: 0.000063 - momentum: 0.000000
2023-10-11 12:18:34,945 epoch 1 - iter 135/272 - loss 2.67455773 - time (sec): 47.48 - samples/sec: 554.80 - lr: 0.000079 - momentum: 0.000000
2023-10-11 12:18:43,921 epoch 1 - iter 162/272 - loss 2.57823913 - time (sec): 56.46 - samples/sec: 550.87 - lr: 0.000095 - momentum: 0.000000
2023-10-11 12:18:52,759 epoch 1 - iter 189/272 - loss 2.47103511 - time (sec): 65.29 - samples/sec: 548.01 - lr: 0.000111 - momentum: 0.000000
2023-10-11 12:19:02,746 epoch 1 - iter 216/272 - loss 2.34565635 - time (sec): 75.28 - samples/sec: 551.99 - lr: 0.000126 - momentum: 0.000000
2023-10-11 12:19:11,733 epoch 1 - iter 243/272 - loss 2.22212358 - time (sec): 84.27 - samples/sec: 552.05 - lr: 0.000142 - momentum: 0.000000
2023-10-11 12:19:20,836 epoch 1 - iter 270/272 - loss 2.09514760 - time (sec): 93.37 - samples/sec: 553.28 - lr: 0.000158 - momentum: 0.000000
2023-10-11 12:19:21,365 ----------------------------------------------------------------------------------------------------
2023-10-11 12:19:21,365 EPOCH 1 done: loss 2.0875 - lr: 0.000158
2023-10-11 12:19:26,097 DEV : loss 0.7258709073066711 - f1-score (micro avg)  0.0
2023-10-11 12:19:26,106 ----------------------------------------------------------------------------------------------------
2023-10-11 12:19:35,428 epoch 2 - iter 27/272 - loss 0.70983607 - time (sec): 9.32 - samples/sec: 573.84 - lr: 0.000158 - momentum: 0.000000
2023-10-11 12:19:44,149 epoch 2 - iter 54/272 - loss 0.68848670 - time (sec): 18.04 - samples/sec: 560.06 - lr: 0.000157 - momentum: 0.000000
2023-10-11 12:19:52,270 epoch 2 - iter 81/272 - loss 0.66075679 - time (sec): 26.16 - samples/sec: 534.87 - lr: 0.000155 - momentum: 0.000000
2023-10-11 12:20:02,359 epoch 2 - iter 108/272 - loss 0.60795335 - time (sec): 36.25 - samples/sec: 557.87 - lr: 0.000153 - momentum: 0.000000
2023-10-11 12:20:11,747 epoch 2 - iter 135/272 - loss 0.58284167 - time (sec): 45.64 - samples/sec: 552.89 - lr: 0.000151 - momentum: 0.000000
2023-10-11 12:20:21,743 epoch 2 - iter 162/272 - loss 0.53477008 - time (sec): 55.63 - samples/sec: 558.84 - lr: 0.000149 - momentum: 0.000000
2023-10-11 12:20:30,560 epoch 2 - iter 189/272 - loss 0.51131648 - time (sec): 64.45 - samples/sec: 549.06 - lr: 0.000148 - momentum: 0.000000
2023-10-11 12:20:39,933 epoch 2 - iter 216/272 - loss 0.48449409 - time (sec): 73.83 - samples/sec: 547.01 - lr: 0.000146 - momentum: 0.000000
2023-10-11 12:20:49,031 epoch 2 - iter 243/272 - loss 0.47029300 - time (sec): 82.92 - samples/sec: 544.63 - lr: 0.000144 - momentum: 0.000000
2023-10-11 12:20:59,571 epoch 2 - iter 270/272 - loss 0.45240623 - time (sec): 93.46 - samples/sec: 554.23 - lr: 0.000142 - momentum: 0.000000
2023-10-11 12:20:59,996 ----------------------------------------------------------------------------------------------------
2023-10-11 12:20:59,996 EPOCH 2 done: loss 0.4521 - lr: 0.000142
2023-10-11 12:21:05,525 DEV : loss 0.27614670991897583 - f1-score (micro avg)  0.3235
2023-10-11 12:21:05,534 saving best model
2023-10-11 12:21:06,411 ----------------------------------------------------------------------------------------------------
2023-10-11 12:21:15,715 epoch 3 - iter 27/272 - loss 0.23309089 - time (sec): 9.30 - samples/sec: 548.35 - lr: 0.000141 - momentum: 0.000000
2023-10-11 12:21:25,472 epoch 3 - iter 54/272 - loss 0.27485890 - time (sec): 19.06 - samples/sec: 567.71 - lr: 0.000139 - momentum: 0.000000
2023-10-11 12:21:34,737 epoch 3 - iter 81/272 - loss 0.27012296 - time (sec): 28.32 - samples/sec: 569.76 - lr: 0.000137 - momentum: 0.000000
2023-10-11 12:21:43,893 epoch 3 - iter 108/272 - loss 0.26806557 - time (sec): 37.48 - samples/sec: 560.35 - lr: 0.000135 - momentum: 0.000000
2023-10-11 12:21:53,166 epoch 3 - iter 135/272 - loss 0.26644863 - time (sec): 46.75 - samples/sec: 560.30 - lr: 0.000133 - momentum: 0.000000
2023-10-11 12:22:02,417 epoch 3 - iter 162/272 - loss 0.27294415 - time (sec): 56.00 - samples/sec: 559.74 - lr: 0.000132 - momentum: 0.000000
2023-10-11 12:22:12,036 epoch 3 - iter 189/272 - loss 0.26862119 - time (sec): 65.62 - samples/sec: 563.37 - lr: 0.000130 - momentum: 0.000000
2023-10-11 12:22:21,344 epoch 3 - iter 216/272 - loss 0.26282089 - time (sec): 74.93 - samples/sec: 559.23 - lr: 0.000128 - momentum: 0.000000
2023-10-11 12:22:30,546 epoch 3 - iter 243/272 - loss 0.26662864 - time (sec): 84.13 - samples/sec: 556.68 - lr: 0.000126 - momentum: 0.000000
2023-10-11 12:22:39,525 epoch 3 - iter 270/272 - loss 0.26058992 - time (sec): 93.11 - samples/sec: 554.85 - lr: 0.000125 - momentum: 0.000000
2023-10-11 12:22:40,069 ----------------------------------------------------------------------------------------------------
2023-10-11 12:22:40,069 EPOCH 3 done: loss 0.2592 - lr: 0.000125
2023-10-11 12:22:45,596 DEV : loss 0.19185124337673187 - f1-score (micro avg)  0.5766
2023-10-11 12:22:45,604 saving best model
2023-10-11 12:22:48,091 ----------------------------------------------------------------------------------------------------
2023-10-11 12:22:57,047 epoch 4 - iter 27/272 - loss 0.17559727 - time (sec): 8.95 - samples/sec: 544.28 - lr: 0.000123 - momentum: 0.000000
2023-10-11 12:23:06,445 epoch 4 - iter 54/272 - loss 0.14763057 - time (sec): 18.35 - samples/sec: 564.09 - lr: 0.000121 - momentum: 0.000000
2023-10-11 12:23:16,156 epoch 4 - iter 81/272 - loss 0.16759112 - time (sec): 28.06 - samples/sec: 578.45 - lr: 0.000119 - momentum: 0.000000
2023-10-11 12:23:25,501 epoch 4 - iter 108/272 - loss 0.16355731 - time (sec): 37.41 - samples/sec: 574.32 - lr: 0.000117 - momentum: 0.000000
2023-10-11 12:23:35,043 epoch 4 - iter 135/272 - loss 0.15538460 - time (sec): 46.95 - samples/sec: 575.87 - lr: 0.000116 - momentum: 0.000000
2023-10-11 12:23:43,666 epoch 4 - iter 162/272 - loss 0.15731211 - time (sec): 55.57 - samples/sec: 567.27 - lr: 0.000114 - momentum: 0.000000
2023-10-11 12:23:53,322 epoch 4 - iter 189/272 - loss 0.15895911 - time (sec): 65.23 - samples/sec: 569.26 - lr: 0.000112 - momentum: 0.000000
2023-10-11 12:24:02,161 epoch 4 - iter 216/272 - loss 0.15623754 - time (sec): 74.07 - samples/sec: 564.59 - lr: 0.000110 - momentum: 0.000000
2023-10-11 12:24:10,962 epoch 4 - iter 243/272 - loss 0.15352344 - time (sec): 82.87 - samples/sec: 560.85 - lr: 0.000109 - momentum: 0.000000
2023-10-11 12:24:20,498 epoch 4 - iter 270/272 - loss 0.15512637 - time (sec): 92.40 - samples/sec: 560.35 - lr: 0.000107 - momentum: 0.000000
2023-10-11 12:24:20,943 ----------------------------------------------------------------------------------------------------
2023-10-11 12:24:20,943 EPOCH 4 done: loss 0.1547 - lr: 0.000107
2023-10-11 12:24:26,384 DEV : loss 0.15080419182777405 - f1-score (micro avg)  0.6617
2023-10-11 12:24:26,392 saving best model
2023-10-11 12:24:28,921 ----------------------------------------------------------------------------------------------------
2023-10-11 12:24:38,560 epoch 5 - iter 27/272 - loss 0.11298860 - time (sec): 9.63 - samples/sec: 581.63 - lr: 0.000105 - momentum: 0.000000
2023-10-11 12:24:47,611 epoch 5 - iter 54/272 - loss 0.11828460 - time (sec): 18.69 - samples/sec: 562.67 - lr: 0.000103 - momentum: 0.000000
2023-10-11 12:24:57,149 epoch 5 - iter 81/272 - loss 0.12324494 - time (sec): 28.22 - samples/sec: 576.89 - lr: 0.000101 - momentum: 0.000000
2023-10-11 12:25:06,969 epoch 5 - iter 108/272 - loss 0.11225919 - time (sec): 38.04 - samples/sec: 581.49 - lr: 0.000100 - momentum: 0.000000
2023-10-11 12:25:15,898 epoch 5 - iter 135/272 - loss 0.10889944 - time (sec): 46.97 - samples/sec: 577.04 - lr: 0.000098 - momentum: 0.000000
2023-10-11 12:25:24,717 epoch 5 - iter 162/272 - loss 0.10759412 - time (sec): 55.79 - samples/sec: 569.39 - lr: 0.000096 - momentum: 0.000000
2023-10-11 12:25:33,490 epoch 5 - iter 189/272 - loss 0.10450328 - time (sec): 64.56 - samples/sec: 563.78 - lr: 0.000094 - momentum: 0.000000
2023-10-11 12:25:42,652 epoch 5 - iter 216/272 - loss 0.10251942 - time (sec): 73.73 - samples/sec: 564.22 - lr: 0.000093 - momentum: 0.000000
2023-10-11 12:25:51,924 epoch 5 - iter 243/272 - loss 0.10536311 - time (sec): 83.00 - samples/sec: 564.83 - lr: 0.000091 - momentum: 0.000000
2023-10-11 12:26:00,818 epoch 5 - iter 270/272 - loss 0.10201182 - time (sec): 91.89 - samples/sec: 561.89 - lr: 0.000089 - momentum: 0.000000
2023-10-11 12:26:01,388 ----------------------------------------------------------------------------------------------------
2023-10-11 12:26:01,388 EPOCH 5 done: loss 0.1023 - lr: 0.000089
2023-10-11 12:26:06,848 DEV : loss 0.1377904713153839 - f1-score (micro avg)  0.6462
2023-10-11 12:26:06,856 ----------------------------------------------------------------------------------------------------
2023-10-11 12:26:16,012 epoch 6 - iter 27/272 - loss 0.06858667 - time (sec): 9.15 - samples/sec: 560.28 - lr: 0.000087 - momentum: 0.000000
2023-10-11 12:26:25,347 epoch 6 - iter 54/272 - loss 0.07270870 - time (sec): 18.49 - samples/sec: 552.38 - lr: 0.000085 - momentum: 0.000000
2023-10-11 12:26:35,819 epoch 6 - iter 81/272 - loss 0.07138524 - time (sec): 28.96 - samples/sec: 571.95 - lr: 0.000084 - momentum: 0.000000
2023-10-11 12:26:44,751 epoch 6 - iter 108/272 - loss 0.07082171 - time (sec): 37.89 - samples/sec: 558.81 - lr: 0.000082 - momentum: 0.000000
2023-10-11 12:26:53,646 epoch 6 - iter 135/272 - loss 0.06942375 - time (sec): 46.79 - samples/sec: 554.10 - lr: 0.000080 - momentum: 0.000000
2023-10-11 12:27:02,878 epoch 6 - iter 162/272 - loss 0.06931374 - time (sec): 56.02 - samples/sec: 555.19 - lr: 0.000078 - momentum: 0.000000
2023-10-11 12:27:11,743 epoch 6 - iter 189/272 - loss 0.07471804 - time (sec): 64.89 - samples/sec: 551.02 - lr: 0.000077 - momentum: 0.000000
2023-10-11 12:27:21,147 epoch 6 - iter 216/272 - loss 0.07358616 - time (sec): 74.29 - samples/sec: 551.36 - lr: 0.000075 - momentum: 0.000000
2023-10-11 12:27:31,007 epoch 6 - iter 243/272 - loss 0.07385375 - time (sec): 84.15 - samples/sec: 554.53 - lr: 0.000073 - momentum: 0.000000
2023-10-11 12:27:40,226 epoch 6 - iter 270/272 - loss 0.07393521 - time (sec): 93.37 - samples/sec: 554.54 - lr: 0.000071 - momentum: 0.000000
2023-10-11 12:27:40,629 ----------------------------------------------------------------------------------------------------
2023-10-11 12:27:40,630 EPOCH 6 done: loss 0.0737 - lr: 0.000071
2023-10-11 12:27:46,135 DEV : loss 0.13831757009029388 - f1-score (micro avg)  0.7681
2023-10-11 12:27:46,142 saving best model
2023-10-11 12:27:48,649 ----------------------------------------------------------------------------------------------------
2023-10-11 12:27:57,510 epoch 7 - iter 27/272 - loss 0.05129014 - time (sec): 8.86 - samples/sec: 549.17 - lr: 0.000069 - momentum: 0.000000
2023-10-11 12:28:06,049 epoch 7 - iter 54/272 - loss 0.06171732 - time (sec): 17.40 - samples/sec: 535.80 - lr: 0.000068 - momentum: 0.000000
2023-10-11 12:28:14,620 epoch 7 - iter 81/272 - loss 0.05770185 - time (sec): 25.97 - samples/sec: 533.83 - lr: 0.000066 - momentum: 0.000000
2023-10-11 12:28:23,980 epoch 7 - iter 108/272 - loss 0.05578072 - time (sec): 35.33 - samples/sec: 540.64 - lr: 0.000064 - momentum: 0.000000
2023-10-11 12:28:33,686 epoch 7 - iter 135/272 - loss 0.05183090 - time (sec): 45.03 - samples/sec: 548.95 - lr: 0.000062 - momentum: 0.000000
2023-10-11 12:28:43,514 epoch 7 - iter 162/272 - loss 0.05034293 - time (sec): 54.86 - samples/sec: 556.20 - lr: 0.000061 - momentum: 0.000000
2023-10-11 12:28:52,842 epoch 7 - iter 189/272 - loss 0.05522158 - time (sec): 64.19 - samples/sec: 553.57 - lr: 0.000059 - momentum: 0.000000
2023-10-11 12:29:01,292 epoch 7 - iter 216/272 - loss 0.05317533 - time (sec): 72.64 - samples/sec: 547.22 - lr: 0.000057 - momentum: 0.000000
2023-10-11 12:29:11,075 epoch 7 - iter 243/272 - loss 0.05369366 - time (sec): 82.42 - samples/sec: 554.67 - lr: 0.000055 - momentum: 0.000000
2023-10-11 12:29:21,164 epoch 7 - iter 270/272 - loss 0.05345304 - time (sec): 92.51 - samples/sec: 560.18 - lr: 0.000054 - momentum: 0.000000
2023-10-11 12:29:21,547 ----------------------------------------------------------------------------------------------------
2023-10-11 12:29:21,548 EPOCH 7 done: loss 0.0535 - lr: 0.000054
2023-10-11 12:29:27,021 DEV : loss 0.14701178669929504 - f1-score (micro avg)  0.7956
2023-10-11 12:29:27,029 saving best model
2023-10-11 12:29:29,508 ----------------------------------------------------------------------------------------------------
2023-10-11 12:29:38,586 epoch 8 - iter 27/272 - loss 0.02662217 - time (sec): 9.07 - samples/sec: 567.16 - lr: 0.000052 - momentum: 0.000000
2023-10-11 12:29:48,267 epoch 8 - iter 54/272 - loss 0.04238572 - time (sec): 18.76 - samples/sec: 584.96 - lr: 0.000050 - momentum: 0.000000
2023-10-11 12:29:57,482 epoch 8 - iter 81/272 - loss 0.04066595 - time (sec): 27.97 - samples/sec: 578.41 - lr: 0.000048 - momentum: 0.000000
2023-10-11 12:30:06,552 epoch 8 - iter 108/272 - loss 0.03956566 - time (sec): 37.04 - samples/sec: 565.28 - lr: 0.000046 - momentum: 0.000000
2023-10-11 12:30:16,114 epoch 8 - iter 135/272 - loss 0.03767651 - time (sec): 46.60 - samples/sec: 567.35 - lr: 0.000045 - momentum: 0.000000
2023-10-11 12:30:26,166 epoch 8 - iter 162/272 - loss 0.04051798 - time (sec): 56.65 - samples/sec: 577.03 - lr: 0.000043 - momentum: 0.000000
2023-10-11 12:30:34,685 epoch 8 - iter 189/272 - loss 0.04409632 - time (sec): 65.17 - samples/sec: 565.84 - lr: 0.000041 - momentum: 0.000000
2023-10-11 12:30:44,286 epoch 8 - iter 216/272 - loss 0.04433015 - time (sec): 74.77 - samples/sec: 566.86 - lr: 0.000039 - momentum: 0.000000
2023-10-11 12:30:53,159 epoch 8 - iter 243/272 - loss 0.04347717 - time (sec): 83.65 - samples/sec: 563.86 - lr: 0.000038 - momentum: 0.000000
2023-10-11 12:31:02,010 epoch 8 - iter 270/272 - loss 0.04284592 - time (sec): 92.50 - samples/sec: 559.27 - lr: 0.000036 - momentum: 0.000000
2023-10-11 12:31:02,455 ----------------------------------------------------------------------------------------------------
2023-10-11 12:31:02,455 EPOCH 8 done: loss 0.0426 - lr: 0.000036
2023-10-11 12:31:07,906 DEV : loss 0.14679642021656036 - f1-score (micro avg)  0.8015
2023-10-11 12:31:07,914 saving best model
2023-10-11 12:31:10,409 ----------------------------------------------------------------------------------------------------
2023-10-11 12:31:19,316 epoch 9 - iter 27/272 - loss 0.03044480 - time (sec): 8.90 - samples/sec: 549.94 - lr: 0.000034 - momentum: 0.000000
2023-10-11 12:31:27,617 epoch 9 - iter 54/272 - loss 0.04315447 - time (sec): 17.20 - samples/sec: 538.76 - lr: 0.000032 - momentum: 0.000000
2023-10-11 12:31:36,320 epoch 9 - iter 81/272 - loss 0.03877733 - time (sec): 25.91 - samples/sec: 540.85 - lr: 0.000030 - momentum: 0.000000
2023-10-11 12:31:45,762 epoch 9 - iter 108/272 - loss 0.03541826 - time (sec): 35.35 - samples/sec: 553.43 - lr: 0.000029 - momentum: 0.000000
2023-10-11 12:31:55,099 epoch 9 - iter 135/272 - loss 0.03420976 - time (sec): 44.69 - samples/sec: 559.43 - lr: 0.000027 - momentum: 0.000000
2023-10-11 12:32:04,049 epoch 9 - iter 162/272 - loss 0.03216315 - time (sec): 53.64 - samples/sec: 558.43 - lr: 0.000025 - momentum: 0.000000
2023-10-11 12:32:13,330 epoch 9 - iter 189/272 - loss 0.03081178 - time (sec): 62.92 - samples/sec: 558.94 - lr: 0.000023 - momentum: 0.000000
2023-10-11 12:32:23,043 epoch 9 - iter 216/272 - loss 0.03134856 - time (sec): 72.63 - samples/sec: 564.70 - lr: 0.000022 - momentum: 0.000000
2023-10-11 12:32:32,028 epoch 9 - iter 243/272 - loss 0.03443496 - time (sec): 81.61 - samples/sec: 562.97 - lr: 0.000020 - momentum: 0.000000
2023-10-11 12:32:41,604 epoch 9 - iter 270/272 - loss 0.03386938 - time (sec): 91.19 - samples/sec: 567.00 - lr: 0.000018 - momentum: 0.000000
2023-10-11 12:32:42,083 ----------------------------------------------------------------------------------------------------
2023-10-11 12:32:42,083 EPOCH 9 done: loss 0.0337 - lr: 0.000018
2023-10-11 12:32:47,749 DEV : loss 0.149958074092865 - f1-score (micro avg)  0.8096
2023-10-11 12:32:47,757 saving best model
2023-10-11 12:32:50,259 ----------------------------------------------------------------------------------------------------
2023-10-11 12:32:59,526 epoch 10 - iter 27/272 - loss 0.03830851 - time (sec): 9.26 - samples/sec: 576.23 - lr: 0.000016 - momentum: 0.000000
2023-10-11 12:33:08,503 epoch 10 - iter 54/272 - loss 0.03546184 - time (sec): 18.24 - samples/sec: 571.99 - lr: 0.000014 - momentum: 0.000000
2023-10-11 12:33:17,103 epoch 10 - iter 81/272 - loss 0.03145260 - time (sec): 26.84 - samples/sec: 562.54 - lr: 0.000013 - momentum: 0.000000
2023-10-11 12:33:26,206 epoch 10 - iter 108/272 - loss 0.03259123 - time (sec): 35.94 - samples/sec: 557.04 - lr: 0.000011 - momentum: 0.000000
2023-10-11 12:33:36,463 epoch 10 - iter 135/272 - loss 0.02974927 - time (sec): 46.20 - samples/sec: 570.11 - lr: 0.000009 - momentum: 0.000000
2023-10-11 12:33:45,171 epoch 10 - iter 162/272 - loss 0.02889802 - time (sec): 54.91 - samples/sec: 558.86 - lr: 0.000007 - momentum: 0.000000
2023-10-11 12:33:54,983 epoch 10 - iter 189/272 - loss 0.02806859 - time (sec): 64.72 - samples/sec: 559.46 - lr: 0.000005 - momentum: 0.000000
2023-10-11 12:34:04,346 epoch 10 - iter 216/272 - loss 0.02816137 - time (sec): 74.08 - samples/sec: 557.21 - lr: 0.000004 - momentum: 0.000000
2023-10-11 12:34:13,684 epoch 10 - iter 243/272 - loss 0.02889036 - time (sec): 83.42 - samples/sec: 558.00 - lr: 0.000002 - momentum: 0.000000
2023-10-11 12:34:23,246 epoch 10 - iter 270/272 - loss 0.02974897 - time (sec): 92.98 - samples/sec: 556.61 - lr: 0.000000 - momentum: 0.000000
2023-10-11 12:34:23,713 ----------------------------------------------------------------------------------------------------
2023-10-11 12:34:23,713 EPOCH 10 done: loss 0.0297 - lr: 0.000000
2023-10-11 12:34:29,409 DEV : loss 0.15252262353897095 - f1-score (micro avg)  0.8051
2023-10-11 12:34:30,254 ----------------------------------------------------------------------------------------------------
2023-10-11 12:34:30,256 Loading model from best epoch ...
2023-10-11 12:34:34,051 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-11 12:34:46,395 
Results:
- F-score (micro) 0.7562
- F-score (macro) 0.6778
- Accuracy 0.6276

By class:
              precision    recall  f1-score   support

         LOC     0.7437    0.8558    0.7958       312
         PER     0.7287    0.8654    0.7912       208
         ORG     0.3793    0.4000    0.3894        55
   HumanProd     0.6667    0.8182    0.7347        22

   micro avg     0.7048    0.8157    0.7562       597
   macro avg     0.6296    0.7348    0.6778       597
weighted avg     0.7021    0.8157    0.7545       597

2023-10-11 12:34:46,395 ----------------------------------------------------------------------------------------------------