--- tags: - SuperMarioBros-v0 - RND - CNN - reinforcement-learning - custom-implementation - atari - SuperMarioBros-v0 model-index: - name: RND-SuperMarioBros-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SuperMarioBros-v0 type: SuperMarioBros-v0 metrics: - type: mean_reward value: 2502.70 +/- 418.86 name: mean_reward verified: false --- # **RND with CNN** Agent playing **SuperMarioBros-v0** This is a trained model of a **RND-CNN** agent playing **SuperMarioBros-v0** . To learn to use this model and train yours check this notebook on kaggle: https://www.kaggle.com/code/syedjarullahhisham/drl-extra-personal-unit-5-rnd-super-mario-bros ## Codes Github repos(Give a star if found useful): * https://github.com/hishamcse/DRL-Renegades-Game-Bots * https://github.com/hishamcse/Advanced-DRL-Renegades-Game-Bots Kaggle Notebook: * https://www.kaggle.com/code/syedjarullahhisham/drl-extra-personal-unit-5-rnd-super-mario-bros * https://www.kaggle.com/code/syedjarullahhisham/drl-extra-personal-unit-5-rnd-montezuma-mario-bros # HyperParameters: ``` "trainmethod": "RND", "envid": "SuperMarioBros-v0", "maxstepperepisode": 18000, "learningrate": 0.0001, "numenv": 128, "numstep": 128, "gamma": 0.999, "intgamma": 0.99, "lambda": 0.95, "usegae": true, "clipgradnorm": 0.5, "entropy": 0.001, "epoch": 4, "minibatch": 4, "ppoeps": 0.1, "extcoef": 5.0, "intcoef": 1.0, "stickyaction": true, "actionprob": 0.25, "lifedone": false, "obsnormstep": 50 ```