Benchmark-Results
/
FallenMerick__Smart-Lemon-Cookie-7B
/.ipynb_checkpoints
/results_2024-06-28T14-56-07.716918-checkpoint.json
{ | |
"results": { | |
"Open LLM Leaderboard": { | |
"bleu_acc,none": 0.48592411260709917, | |
"bleu_acc_stderr,none": 0.01749656371704277, | |
"exact_match,flexible-extract": 0.6573161485974223, | |
"exact_match_stderr,flexible-extract": 0.013073030230827912, | |
"rouge1_diff,none": 2.0497625977348237, | |
"rouge1_diff_stderr,none": 0.8467979858374932, | |
"rouge1_acc,none": 0.5067319461444308, | |
"rouge1_acc_stderr,none": 0.017501914492655368, | |
"rouge2_diff,none": 1.3428910448034004, | |
"rouge2_diff_stderr,none": 0.9648647176231531, | |
"exact_match,strict-match": 0.6497346474601972, | |
"exact_match_stderr,strict-match": 0.013140409455571269, | |
"rougeL_acc,none": 0.4981640146878825, | |
"rougeL_acc_stderr,none": 0.017503383046877072, | |
"acc_norm,none": 0.8349384697699305, | |
"acc_norm_stderr,none": 0.0034656728893589055, | |
"bleu_max,none": 20.940311645567302, | |
"bleu_max_stderr,none": 0.7173140178916005, | |
"rouge2_acc,none": 0.4320685434516524, | |
"rouge2_acc_stderr,none": 0.01734120239498827, | |
"rouge1_max,none": 46.177982007870185, | |
"rouge1_max_stderr,none": 0.8131363401138358, | |
"rouge2_max,none": 32.18242146861712, | |
"rouge2_max_stderr,none": 0.9183747194799712, | |
"acc,none": 0.6524833304898358, | |
"acc_stderr,none": 0.002755144452920947, | |
"rougeL_max,none": 42.81466100258748, | |
"rougeL_max_stderr,none": 0.8340477381054907, | |
"bleu_diff,none": 1.3935266971798104, | |
"bleu_diff_stderr,none": 0.6400373603862807, | |
"rougeL_diff,none": 1.718464887616239, | |
"rougeL_diff_stderr,none": 0.8631878996298543, | |
"alias": "Open LLM Leaderboard" | |
}, | |
"arc_challenge": { | |
"acc,none": 0.6390784982935154, | |
"acc_stderr,none": 0.014034761386175458, | |
"acc_norm,none": 0.6706484641638225, | |
"acc_norm_stderr,none": 0.013734057652635473, | |
"alias": " - arc_challenge" | |
}, | |
"gsm8k": { | |
"exact_match,strict-match": 0.6497346474601972, | |
"exact_match_stderr,strict-match": 0.013140409455571267, | |
"exact_match,flexible-extract": 0.6573161485974223, | |
"exact_match_stderr,flexible-extract": 0.013073030230827912, | |
"alias": " - gsm8k" | |
}, | |
"hellaswag": { | |
"acc,none": 0.6714797849034057, | |
"acc_stderr,none": 0.00468715199479105, | |
"acc_norm,none": 0.8541127265484963, | |
"acc_norm_stderr,none": 0.0035227174995242872, | |
"alias": " - hellaswag" | |
}, | |
"mmlu": { | |
"acc,none": 0.6370175188719556, | |
"acc_stderr,none": 0.0038187579064371084, | |
"alias": " - mmlu" | |
}, | |
"mmlu_humanities": { | |
"alias": " - humanities", | |
"acc,none": 0.593836344314559, | |
"acc_stderr,none": 0.006701956606258013 | |
}, | |
"mmlu_formal_logic": { | |
"alias": " - formal_logic", | |
"acc,none": 0.4523809523809524, | |
"acc_stderr,none": 0.044518079590553275 | |
}, | |
"mmlu_high_school_european_history": { | |
"alias": " - high_school_european_history", | |
"acc,none": 0.7757575757575758, | |
"acc_stderr,none": 0.03256866661681102 | |
}, | |
"mmlu_high_school_us_history": { | |
"alias": " - high_school_us_history", | |
"acc,none": 0.8480392156862745, | |
"acc_stderr,none": 0.025195658428931792 | |
}, | |
"mmlu_high_school_world_history": { | |
"alias": " - high_school_world_history", | |
"acc,none": 0.8227848101265823, | |
"acc_stderr,none": 0.024856364184503238 | |
}, | |
"mmlu_international_law": { | |
"alias": " - international_law", | |
"acc,none": 0.8181818181818182, | |
"acc_stderr,none": 0.03520893951097654 | |
}, | |
"mmlu_jurisprudence": { | |
"alias": " - jurisprudence", | |
"acc,none": 0.8240740740740741, | |
"acc_stderr,none": 0.036809181416738807 | |
}, | |
"mmlu_logical_fallacies": { | |
"alias": " - logical_fallacies", | |
"acc,none": 0.7852760736196319, | |
"acc_stderr,none": 0.03226219377286774 | |
}, | |
"mmlu_moral_disputes": { | |
"alias": " - moral_disputes", | |
"acc,none": 0.7225433526011561, | |
"acc_stderr,none": 0.024105712607754307 | |
}, | |
"mmlu_moral_scenarios": { | |
"alias": " - moral_scenarios", | |
"acc,none": 0.37206703910614525, | |
"acc_stderr,none": 0.016165847583563302 | |
}, | |
"mmlu_philosophy": { | |
"alias": " - philosophy", | |
"acc,none": 0.7170418006430869, | |
"acc_stderr,none": 0.02558306248998483 | |
}, | |
"mmlu_prehistory": { | |
"alias": " - prehistory", | |
"acc,none": 0.7345679012345679, | |
"acc_stderr,none": 0.02456922360046085 | |
}, | |
"mmlu_professional_law": { | |
"alias": " - professional_law", | |
"acc,none": 0.47979139504563234, | |
"acc_stderr,none": 0.01275980142776756 | |
}, | |
"mmlu_world_religions": { | |
"alias": " - world_religions", | |
"acc,none": 0.847953216374269, | |
"acc_stderr,none": 0.02753912288906145 | |
}, | |
"mmlu_other": { | |
"alias": " - other", | |
"acc,none": 0.702928870292887, | |
"acc_stderr,none": 0.007868349963426575 | |
}, | |
"mmlu_business_ethics": { | |
"alias": " - business_ethics", | |
"acc,none": 0.57, | |
"acc_stderr,none": 0.049756985195624284 | |
}, | |
"mmlu_clinical_knowledge": { | |
"alias": " - clinical_knowledge", | |
"acc,none": 0.6943396226415094, | |
"acc_stderr,none": 0.028353298073322666 | |
}, | |
"mmlu_college_medicine": { | |
"alias": " - college_medicine", | |
"acc,none": 0.6763005780346821, | |
"acc_stderr,none": 0.0356760379963917 | |
}, | |
"mmlu_global_facts": { | |
"alias": " - global_facts", | |
"acc,none": 0.32, | |
"acc_stderr,none": 0.046882617226215034 | |
}, | |
"mmlu_human_aging": { | |
"alias": " - human_aging", | |
"acc,none": 0.695067264573991, | |
"acc_stderr,none": 0.030898610882477518 | |
}, | |
"mmlu_management": { | |
"alias": " - management", | |
"acc,none": 0.7864077669902912, | |
"acc_stderr,none": 0.04058042015646034 | |
}, | |
"mmlu_marketing": { | |
"alias": " - marketing", | |
"acc,none": 0.8675213675213675, | |
"acc_stderr,none": 0.022209309073165616 | |
}, | |
"mmlu_medical_genetics": { | |
"alias": " - medical_genetics", | |
"acc,none": 0.7, | |
"acc_stderr,none": 0.046056618647183814 | |
}, | |
"mmlu_miscellaneous": { | |
"alias": " - miscellaneous", | |
"acc,none": 0.8275862068965517, | |
"acc_stderr,none": 0.013507943909371802 | |
}, | |
"mmlu_nutrition": { | |
"alias": " - nutrition", | |
"acc,none": 0.7320261437908496, | |
"acc_stderr,none": 0.025360603796242553 | |
}, | |
"mmlu_professional_accounting": { | |
"alias": " - professional_accounting", | |
"acc,none": 0.48936170212765956, | |
"acc_stderr,none": 0.029820747191422466 | |
}, | |
"mmlu_professional_medicine": { | |
"alias": " - professional_medicine", | |
"acc,none": 0.6838235294117647, | |
"acc_stderr,none": 0.028245687391462913 | |
}, | |
"mmlu_virology": { | |
"alias": " - virology", | |
"acc,none": 0.536144578313253, | |
"acc_stderr,none": 0.03882310850890593 | |
}, | |
"mmlu_social_sciences": { | |
"alias": " - social_sciences", | |
"acc,none": 0.7409814754631134, | |
"acc_stderr,none": 0.0077233871931608284 | |
}, | |
"mmlu_econometrics": { | |
"alias": " - econometrics", | |
"acc,none": 0.5087719298245614, | |
"acc_stderr,none": 0.04702880432049615 | |
}, | |
"mmlu_high_school_geography": { | |
"alias": " - high_school_geography", | |
"acc,none": 0.803030303030303, | |
"acc_stderr,none": 0.028335609732463362 | |
}, | |
"mmlu_high_school_government_and_politics": { | |
"alias": " - high_school_government_and_politics", | |
"acc,none": 0.8808290155440415, | |
"acc_stderr,none": 0.023381935348121427 | |
}, | |
"mmlu_high_school_macroeconomics": { | |
"alias": " - high_school_macroeconomics", | |
"acc,none": 0.6717948717948717, | |
"acc_stderr,none": 0.023807633198657266 | |
}, | |
"mmlu_high_school_microeconomics": { | |
"alias": " - high_school_microeconomics", | |
"acc,none": 0.7100840336134454, | |
"acc_stderr,none": 0.029472485833136094 | |
}, | |
"mmlu_high_school_psychology": { | |
"alias": " - high_school_psychology", | |
"acc,none": 0.8366972477064221, | |
"acc_stderr,none": 0.01584825580650152 | |
}, | |
"mmlu_human_sexuality": { | |
"alias": " - human_sexuality", | |
"acc,none": 0.7557251908396947, | |
"acc_stderr,none": 0.037683359597287434 | |
}, | |
"mmlu_professional_psychology": { | |
"alias": " - professional_psychology", | |
"acc,none": 0.6454248366013072, | |
"acc_stderr,none": 0.019353360547553693 | |
}, | |
"mmlu_public_relations": { | |
"alias": " - public_relations", | |
"acc,none": 0.6727272727272727, | |
"acc_stderr,none": 0.0449429086625209 | |
}, | |
"mmlu_security_studies": { | |
"alias": " - security_studies", | |
"acc,none": 0.7346938775510204, | |
"acc_stderr,none": 0.028263889943784603 | |
}, | |
"mmlu_sociology": { | |
"alias": " - sociology", | |
"acc,none": 0.8507462686567164, | |
"acc_stderr,none": 0.0251969298748271 | |
}, | |
"mmlu_us_foreign_policy": { | |
"alias": " - us_foreign_policy", | |
"acc,none": 0.87, | |
"acc_stderr,none": 0.03379976689896308 | |
}, | |
"mmlu_stem": { | |
"alias": " - stem", | |
"acc,none": 0.5350459879479861, | |
"acc_stderr,none": 0.008502490762016599 | |
}, | |
"mmlu_abstract_algebra": { | |
"alias": " - abstract_algebra", | |
"acc,none": 0.35, | |
"acc_stderr,none": 0.0479372485441102 | |
}, | |
"mmlu_anatomy": { | |
"alias": " - anatomy", | |
"acc,none": 0.6222222222222222, | |
"acc_stderr,none": 0.04188307537595853 | |
}, | |
"mmlu_astronomy": { | |
"alias": " - astronomy", | |
"acc,none": 0.6578947368421053, | |
"acc_stderr,none": 0.038607315993160904 | |
}, | |
"mmlu_college_biology": { | |
"alias": " - college_biology", | |
"acc,none": 0.7638888888888888, | |
"acc_stderr,none": 0.03551446610810826 | |
}, | |
"mmlu_college_chemistry": { | |
"alias": " - college_chemistry", | |
"acc,none": 0.47, | |
"acc_stderr,none": 0.05016135580465919 | |
}, | |
"mmlu_college_computer_science": { | |
"alias": " - college_computer_science", | |
"acc,none": 0.54, | |
"acc_stderr,none": 0.05009082659620332 | |
}, | |
"mmlu_college_mathematics": { | |
"alias": " - college_mathematics", | |
"acc,none": 0.4, | |
"acc_stderr,none": 0.049236596391733084 | |
}, | |
"mmlu_college_physics": { | |
"alias": " - college_physics", | |
"acc,none": 0.4117647058823529, | |
"acc_stderr,none": 0.04897104952726366 | |
}, | |
"mmlu_computer_security": { | |
"alias": " - computer_security", | |
"acc,none": 0.8, | |
"acc_stderr,none": 0.04020151261036846 | |
}, | |
"mmlu_conceptual_physics": { | |
"alias": " - conceptual_physics", | |
"acc,none": 0.5787234042553191, | |
"acc_stderr,none": 0.03227834510146268 | |
}, | |
"mmlu_electrical_engineering": { | |
"alias": " - electrical_engineering", | |
"acc,none": 0.5793103448275863, | |
"acc_stderr,none": 0.04113914981189261 | |
}, | |
"mmlu_elementary_mathematics": { | |
"alias": " - elementary_mathematics", | |
"acc,none": 0.3968253968253968, | |
"acc_stderr,none": 0.025197101074246483 | |
}, | |
"mmlu_high_school_biology": { | |
"alias": " - high_school_biology", | |
"acc,none": 0.7774193548387097, | |
"acc_stderr,none": 0.023664216671642525 | |
}, | |
"mmlu_high_school_chemistry": { | |
"alias": " - high_school_chemistry", | |
"acc,none": 0.5073891625615764, | |
"acc_stderr,none": 0.0351760354036101 | |
}, | |
"mmlu_high_school_computer_science": { | |
"alias": " - high_school_computer_science", | |
"acc,none": 0.72, | |
"acc_stderr,none": 0.045126085985421276 | |
}, | |
"mmlu_high_school_mathematics": { | |
"alias": " - high_school_mathematics", | |
"acc,none": 0.34814814814814815, | |
"acc_stderr,none": 0.029045600290616258 | |
}, | |
"mmlu_high_school_physics": { | |
"alias": " - high_school_physics", | |
"acc,none": 0.3509933774834437, | |
"acc_stderr,none": 0.03896981964257375 | |
}, | |
"mmlu_high_school_statistics": { | |
"alias": " - high_school_statistics", | |
"acc,none": 0.5046296296296297, | |
"acc_stderr,none": 0.03409825519163572 | |
}, | |
"mmlu_machine_learning": { | |
"alias": " - machine_learning", | |
"acc,none": 0.4732142857142857, | |
"acc_stderr,none": 0.047389751192741546 | |
}, | |
"truthfulqa": { | |
"bleu_acc,none": 0.48592411260709917, | |
"bleu_acc_stderr,none": 0.01749656371704277, | |
"rouge1_diff,none": 2.0497625977348237, | |
"rouge1_diff_stderr,none": 0.8467979858374932, | |
"rouge1_acc,none": 0.5067319461444308, | |
"rouge1_acc_stderr,none": 0.017501914492655368, | |
"rouge2_diff,none": 1.3428910448034004, | |
"rouge2_diff_stderr,none": 0.9648647176231531, | |
"rougeL_acc,none": 0.4981640146878825, | |
"rougeL_acc_stderr,none": 0.017503383046877072, | |
"bleu_max,none": 20.940311645567302, | |
"bleu_max_stderr,none": 0.7173140178916005, | |
"rouge2_acc,none": 0.4320685434516524, | |
"rouge2_acc_stderr,none": 0.01734120239498827, | |
"rouge1_max,none": 46.177982007870185, | |
"rouge1_max_stderr,none": 0.8131363401138358, | |
"rouge2_max,none": 32.18242146861712, | |
"rouge2_max_stderr,none": 0.9183747194799712, | |
"rougeL_max,none": 42.81466100258748, | |
"rougeL_max_stderr,none": 0.8340477381054907, | |
"acc,none": 0.5163944376892423, | |
"acc_stderr,none": 0.011629460414206856, | |
"bleu_diff,none": 1.3935266971798104, | |
"bleu_diff_stderr,none": 0.6400373603862807, | |
"rougeL_diff,none": 1.718464887616239, | |
"rougeL_diff_stderr,none": 0.8631878996298543, | |
"alias": " - truthfulqa" | |
}, | |
"truthfulqa_gen": { | |
"bleu_max,none": 20.940311645567302, | |
"bleu_max_stderr,none": 0.7173140178916005, | |
"bleu_acc,none": 0.48592411260709917, | |
"bleu_acc_stderr,none": 0.01749656371704277, | |
"bleu_diff,none": 1.3935266971798104, | |
"bleu_diff_stderr,none": 0.6400373603862807, | |
"rouge1_max,none": 46.177982007870185, | |
"rouge1_max_stderr,none": 0.8131363401138358, | |
"rouge1_acc,none": 0.5067319461444308, | |
"rouge1_acc_stderr,none": 0.017501914492655368, | |
"rouge1_diff,none": 2.0497625977348237, | |
"rouge1_diff_stderr,none": 0.8467979858374931, | |
"rouge2_max,none": 32.18242146861712, | |
"rouge2_max_stderr,none": 0.9183747194799713, | |
"rouge2_acc,none": 0.4320685434516524, | |
"rouge2_acc_stderr,none": 0.01734120239498827, | |
"rouge2_diff,none": 1.3428910448034004, | |
"rouge2_diff_stderr,none": 0.9648647176231531, | |
"rougeL_max,none": 42.81466100258748, | |
"rougeL_max_stderr,none": 0.8340477381054907, | |
"rougeL_acc,none": 0.4981640146878825, | |
"rougeL_acc_stderr,none": 0.017503383046877072, | |
"rougeL_diff,none": 1.718464887616239, | |
"rougeL_diff_stderr,none": 0.8631878996298543, | |
"alias": " - truthfulqa_gen" | |
}, | |
"truthfulqa_mc1": { | |
"acc,none": 0.4320685434516524, | |
"acc_stderr,none": 0.01734120239498826, | |
"alias": " - truthfulqa_mc1" | |
}, | |
"truthfulqa_mc2": { | |
"acc,none": 0.6007203319268323, | |
"acc_stderr,none": 0.015500325725560432, | |
"alias": " - truthfulqa_mc2" | |
}, | |
"winogrande": { | |
"acc,none": 0.7734806629834254, | |
"acc_stderr,none": 0.01176414905469832, | |
"alias": " - winogrande" | |
}, | |
"eq_bench": { | |
"eqbench,none": 68.12395548919517, | |
"eqbench_stderr,none": 2.1553076487761045, | |
"percent_parseable,none": 100.0, | |
"percent_parseable_stderr,none": 0.0, | |
"alias": "eq_bench" | |
} | |
}, | |
"groups": { | |
"Open LLM Leaderboard": { | |
"bleu_acc,none": 0.48592411260709917, | |
"bleu_acc_stderr,none": 0.01749656371704277, | |
"exact_match,flexible-extract": 0.6573161485974223, | |
"exact_match_stderr,flexible-extract": 0.013073030230827912, | |
"rouge1_diff,none": 2.0497625977348237, | |
"rouge1_diff_stderr,none": 0.8467979858374932, | |
"rouge1_acc,none": 0.5067319461444308, | |
"rouge1_acc_stderr,none": 0.017501914492655368, | |
"rouge2_diff,none": 1.3428910448034004, | |
"rouge2_diff_stderr,none": 0.9648647176231531, | |
"exact_match,strict-match": 0.6497346474601972, | |
"exact_match_stderr,strict-match": 0.013140409455571269, | |
"rougeL_acc,none": 0.4981640146878825, | |
"rougeL_acc_stderr,none": 0.017503383046877072, | |
"acc_norm,none": 0.8349384697699305, | |
"acc_norm_stderr,none": 0.0034656728893589055, | |
"bleu_max,none": 20.940311645567302, | |
"bleu_max_stderr,none": 0.7173140178916005, | |
"rouge2_acc,none": 0.4320685434516524, | |
"rouge2_acc_stderr,none": 0.01734120239498827, | |
"rouge1_max,none": 46.177982007870185, | |
"rouge1_max_stderr,none": 0.8131363401138358, | |
"rouge2_max,none": 32.18242146861712, | |
"rouge2_max_stderr,none": 0.9183747194799712, | |
"acc,none": 0.6524833304898358, | |
"acc_stderr,none": 0.002755144452920947, | |
"rougeL_max,none": 42.81466100258748, | |
"rougeL_max_stderr,none": 0.8340477381054907, | |
"bleu_diff,none": 1.3935266971798104, | |
"bleu_diff_stderr,none": 0.6400373603862807, | |
"rougeL_diff,none": 1.718464887616239, | |
"rougeL_diff_stderr,none": 0.8631878996298543, | |
"alias": "Open LLM Leaderboard" | |
}, | |
"mmlu": { | |
"acc,none": 0.6370175188719556, | |
"acc_stderr,none": 0.0038187579064371084, | |
"alias": " - mmlu" | |
}, | |
"mmlu_humanities": { | |
"alias": " - humanities", | |
"acc,none": 0.593836344314559, | |
"acc_stderr,none": 0.006701956606258013 | |
}, | |
"mmlu_other": { | |
"alias": " - other", | |
"acc,none": 0.702928870292887, | |
"acc_stderr,none": 0.007868349963426575 | |
}, | |
"mmlu_social_sciences": { | |
"alias": " - social_sciences", | |
"acc,none": 0.7409814754631134, | |
"acc_stderr,none": 0.0077233871931608284 | |
}, | |
"mmlu_stem": { | |
"alias": " - stem", | |
"acc,none": 0.5350459879479861, | |
"acc_stderr,none": 0.008502490762016599 | |
}, | |
"truthfulqa": { | |
"bleu_acc,none": 0.48592411260709917, | |
"bleu_acc_stderr,none": 0.01749656371704277, | |
"rouge1_diff,none": 2.0497625977348237, | |
"rouge1_diff_stderr,none": 0.8467979858374932, | |
"rouge1_acc,none": 0.5067319461444308, | |
"rouge1_acc_stderr,none": 0.017501914492655368, | |
"rouge2_diff,none": 1.3428910448034004, | |
"rouge2_diff_stderr,none": 0.9648647176231531, | |
"rougeL_acc,none": 0.4981640146878825, | |
"rougeL_acc_stderr,none": 0.017503383046877072, | |
"bleu_max,none": 20.940311645567302, | |
"bleu_max_stderr,none": 0.7173140178916005, | |
"rouge2_acc,none": 0.4320685434516524, | |
"rouge2_acc_stderr,none": 0.01734120239498827, | |
"rouge1_max,none": 46.177982007870185, | |
"rouge1_max_stderr,none": 0.8131363401138358, | |
"rouge2_max,none": 32.18242146861712, | |
"rouge2_max_stderr,none": 0.9183747194799712, | |
"rougeL_max,none": 42.81466100258748, | |
"rougeL_max_stderr,none": 0.8340477381054907, | |
"acc,none": 0.5163944376892423, | |
"acc_stderr,none": 0.011629460414206856, | |
"bleu_diff,none": 1.3935266971798104, | |
"bleu_diff_stderr,none": 0.6400373603862807, | |
"rougeL_diff,none": 1.718464887616239, | |
"rougeL_diff_stderr,none": 0.8631878996298543, | |
"alias": " - truthfulqa" | |
} | |
}, | |
"group_subtasks": { | |
"eq_bench": [], | |
"truthfulqa": [ | |
"truthfulqa_gen", | |
"truthfulqa_mc1", | |
"truthfulqa_mc2" | |
], | |
"mmlu_stem": [ | |
"mmlu_high_school_chemistry", | |
"mmlu_college_physics", | |
"mmlu_college_mathematics", | |
"mmlu_astronomy", | |
"mmlu_high_school_physics", | |
"mmlu_computer_security", | |
"mmlu_elementary_mathematics", | |
"mmlu_electrical_engineering", | |
"mmlu_college_biology", | |
"mmlu_machine_learning", | |
"mmlu_high_school_biology", | |
"mmlu_high_school_mathematics", | |
"mmlu_anatomy", | |
"mmlu_high_school_statistics", | |
"mmlu_college_chemistry", | |
"mmlu_conceptual_physics", | |
"mmlu_high_school_computer_science", | |
"mmlu_college_computer_science", | |
"mmlu_abstract_algebra" | |
], | |
"mmlu_other": [ | |
"mmlu_professional_medicine", | |
"mmlu_professional_accounting", | |
"mmlu_management", | |
"mmlu_global_facts", | |
"mmlu_college_medicine", | |
"mmlu_business_ethics", | |
"mmlu_nutrition", | |
"mmlu_medical_genetics", | |
"mmlu_virology", | |
"mmlu_human_aging", | |
"mmlu_clinical_knowledge", | |
"mmlu_miscellaneous", | |
"mmlu_marketing" | |
], | |
"mmlu_social_sciences": [ | |
"mmlu_high_school_psychology", | |
"mmlu_sociology", | |
"mmlu_high_school_government_and_politics", | |
"mmlu_public_relations", | |
"mmlu_high_school_macroeconomics", | |
"mmlu_high_school_geography", | |
"mmlu_high_school_microeconomics", | |
"mmlu_security_studies", | |
"mmlu_us_foreign_policy", | |
"mmlu_professional_psychology", | |
"mmlu_human_sexuality", | |
"mmlu_econometrics" | |
], | |
"mmlu_humanities": [ | |
"mmlu_high_school_european_history", | |
"mmlu_formal_logic", | |
"mmlu_moral_scenarios", | |
"mmlu_moral_disputes", | |
"mmlu_world_religions", | |
"mmlu_high_school_world_history", | |
"mmlu_logical_fallacies", | |
"mmlu_international_law", | |
"mmlu_philosophy", | |
"mmlu_professional_law", | |
"mmlu_high_school_us_history", | |
"mmlu_prehistory", | |
"mmlu_jurisprudence" | |
], | |
"mmlu": [ | |
"mmlu_humanities", | |
"mmlu_social_sciences", | |
"mmlu_other", | |
"mmlu_stem" | |
], | |
"Open LLM Leaderboard": [ | |
"gsm8k", | |
"winogrande", | |
"mmlu", | |
"truthfulqa", | |
"hellaswag", | |
"arc_challenge" | |
] | |
}, | |
"configs": { | |
"arc_challenge": { | |
"task": "arc_challenge", | |
"group": "Open LLM Leaderboard", | |
"dataset_path": "allenai/ai2_arc", | |
"dataset_name": "ARC-Challenge", | |
"training_split": "train", | |
"validation_split": "validation", | |
"test_split": "test", | |
"fewshot_split": "validation", | |
"doc_to_text": "Question: {{question}}\nAnswer:", | |
"doc_to_target": "{{choices.label.index(answerKey)}}", | |
"doc_to_choice": "{{choices.text}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 25, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc_norm", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:", | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"eq_bench": { | |
"task": "eq_bench", | |
"dataset_path": "pbevan11/EQ-Bench", | |
"validation_split": "validation", | |
"doc_to_text": "prompt", | |
"doc_to_target": "reference_answer_fullscale", | |
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "eqbench", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "percent_parseable", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"do_sample": false, | |
"temperature": 0.0, | |
"max_gen_toks": 80, | |
"until": [ | |
"\n\n" | |
] | |
}, | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 2.1 | |
} | |
}, | |
"gsm8k": { | |
"task": "gsm8k", | |
"group": "Open LLM Leaderboard", | |
"dataset_path": "gsm8k", | |
"dataset_name": "main", | |
"training_split": "train", | |
"test_split": "test", | |
"fewshot_split": "train", | |
"doc_to_text": "Question: {{question}}\nAnswer:", | |
"doc_to_target": "{{answer}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "exact_match", | |
"aggregation": "mean", | |
"higher_is_better": true, | |
"ignore_case": true, | |
"ignore_punctuation": false, | |
"regexes_to_ignore": [ | |
",", | |
"\\$", | |
"(?s).*#### ", | |
"\\.$" | |
] | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"until": [ | |
"Question:", | |
"</s>", | |
"<|im_end|>" | |
], | |
"do_sample": false, | |
"temperature": 0.0 | |
}, | |
"repeats": 1, | |
"filter_list": [ | |
{ | |
"name": "strict-match", | |
"filter": [ | |
{ | |
"function": "regex", | |
"regex_pattern": "#### (\\-?[0-9\\.\\,]+)" | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
}, | |
{ | |
"name": "flexible-extract", | |
"filter": [ | |
{ | |
"function": "regex", | |
"group_select": -1, | |
"regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)" | |
}, | |
{ | |
"function": "take_first" | |
} | |
] | |
} | |
], | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 3.0 | |
} | |
}, | |
"hellaswag": { | |
"task": "hellaswag", | |
"group": "Open LLM Leaderboard", | |
"dataset_path": "hellaswag", | |
"training_split": "train", | |
"validation_split": "validation", | |
"fewshot_split": "train", | |
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n", | |
"doc_to_text": "{{query}}", | |
"doc_to_target": "{{label}}", | |
"doc_to_choice": "choices", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 10, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "acc_norm", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 1.0 | |
} | |
}, | |
"mmlu_abstract_algebra": { | |
"task": "mmlu_abstract_algebra", | |
"task_alias": "abstract_algebra", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "abstract_algebra", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_anatomy": { | |
"task": "mmlu_anatomy", | |
"task_alias": "anatomy", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "anatomy", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_astronomy": { | |
"task": "mmlu_astronomy", | |
"task_alias": "astronomy", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "astronomy", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_business_ethics": { | |
"task": "mmlu_business_ethics", | |
"task_alias": "business_ethics", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "business_ethics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_clinical_knowledge": { | |
"task": "mmlu_clinical_knowledge", | |
"task_alias": "clinical_knowledge", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "clinical_knowledge", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_biology": { | |
"task": "mmlu_college_biology", | |
"task_alias": "college_biology", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_biology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college biology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_chemistry": { | |
"task": "mmlu_college_chemistry", | |
"task_alias": "college_chemistry", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_chemistry", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_computer_science": { | |
"task": "mmlu_college_computer_science", | |
"task_alias": "college_computer_science", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_computer_science", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_mathematics": { | |
"task": "mmlu_college_mathematics", | |
"task_alias": "college_mathematics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_mathematics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_medicine": { | |
"task": "mmlu_college_medicine", | |
"task_alias": "college_medicine", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_medicine", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_college_physics": { | |
"task": "mmlu_college_physics", | |
"task_alias": "college_physics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "college_physics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about college physics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_computer_security": { | |
"task": "mmlu_computer_security", | |
"task_alias": "computer_security", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "computer_security", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about computer security.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_conceptual_physics": { | |
"task": "mmlu_conceptual_physics", | |
"task_alias": "conceptual_physics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "conceptual_physics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_econometrics": { | |
"task": "mmlu_econometrics", | |
"task_alias": "econometrics", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "econometrics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_electrical_engineering": { | |
"task": "mmlu_electrical_engineering", | |
"task_alias": "electrical_engineering", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "electrical_engineering", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_elementary_mathematics": { | |
"task": "mmlu_elementary_mathematics", | |
"task_alias": "elementary_mathematics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "elementary_mathematics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_formal_logic": { | |
"task": "mmlu_formal_logic", | |
"task_alias": "formal_logic", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "formal_logic", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_global_facts": { | |
"task": "mmlu_global_facts", | |
"task_alias": "global_facts", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "global_facts", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about global facts.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_biology": { | |
"task": "mmlu_high_school_biology", | |
"task_alias": "high_school_biology", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_biology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_chemistry": { | |
"task": "mmlu_high_school_chemistry", | |
"task_alias": "high_school_chemistry", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_chemistry", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_computer_science": { | |
"task": "mmlu_high_school_computer_science", | |
"task_alias": "high_school_computer_science", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_computer_science", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_european_history": { | |
"task": "mmlu_high_school_european_history", | |
"task_alias": "high_school_european_history", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_european_history", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_geography": { | |
"task": "mmlu_high_school_geography", | |
"task_alias": "high_school_geography", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_geography", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_government_and_politics": { | |
"task": "mmlu_high_school_government_and_politics", | |
"task_alias": "high_school_government_and_politics", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_government_and_politics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_macroeconomics": { | |
"task": "mmlu_high_school_macroeconomics", | |
"task_alias": "high_school_macroeconomics", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_macroeconomics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_mathematics": { | |
"task": "mmlu_high_school_mathematics", | |
"task_alias": "high_school_mathematics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_mathematics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_microeconomics": { | |
"task": "mmlu_high_school_microeconomics", | |
"task_alias": "high_school_microeconomics", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_microeconomics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_physics": { | |
"task": "mmlu_high_school_physics", | |
"task_alias": "high_school_physics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_physics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_psychology": { | |
"task": "mmlu_high_school_psychology", | |
"task_alias": "high_school_psychology", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_psychology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_statistics": { | |
"task": "mmlu_high_school_statistics", | |
"task_alias": "high_school_statistics", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_statistics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_us_history": { | |
"task": "mmlu_high_school_us_history", | |
"task_alias": "high_school_us_history", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_us_history", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_high_school_world_history": { | |
"task": "mmlu_high_school_world_history", | |
"task_alias": "high_school_world_history", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "high_school_world_history", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_human_aging": { | |
"task": "mmlu_human_aging", | |
"task_alias": "human_aging", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "human_aging", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about human aging.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_human_sexuality": { | |
"task": "mmlu_human_sexuality", | |
"task_alias": "human_sexuality", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "human_sexuality", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_international_law": { | |
"task": "mmlu_international_law", | |
"task_alias": "international_law", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "international_law", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about international law.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_jurisprudence": { | |
"task": "mmlu_jurisprudence", | |
"task_alias": "jurisprudence", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "jurisprudence", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_logical_fallacies": { | |
"task": "mmlu_logical_fallacies", | |
"task_alias": "logical_fallacies", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "logical_fallacies", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_machine_learning": { | |
"task": "mmlu_machine_learning", | |
"task_alias": "machine_learning", | |
"group": "mmlu_stem", | |
"group_alias": "stem", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "machine_learning", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_management": { | |
"task": "mmlu_management", | |
"task_alias": "management", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "management", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about management.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_marketing": { | |
"task": "mmlu_marketing", | |
"task_alias": "marketing", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "marketing", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about marketing.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_medical_genetics": { | |
"task": "mmlu_medical_genetics", | |
"task_alias": "medical_genetics", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "medical_genetics", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_miscellaneous": { | |
"task": "mmlu_miscellaneous", | |
"task_alias": "miscellaneous", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "miscellaneous", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_moral_disputes": { | |
"task": "mmlu_moral_disputes", | |
"task_alias": "moral_disputes", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "moral_disputes", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_moral_scenarios": { | |
"task": "mmlu_moral_scenarios", | |
"task_alias": "moral_scenarios", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "moral_scenarios", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_nutrition": { | |
"task": "mmlu_nutrition", | |
"task_alias": "nutrition", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "nutrition", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_philosophy": { | |
"task": "mmlu_philosophy", | |
"task_alias": "philosophy", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "philosophy", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_prehistory": { | |
"task": "mmlu_prehistory", | |
"task_alias": "prehistory", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "prehistory", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_professional_accounting": { | |
"task": "mmlu_professional_accounting", | |
"task_alias": "professional_accounting", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "professional_accounting", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_professional_law": { | |
"task": "mmlu_professional_law", | |
"task_alias": "professional_law", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "professional_law", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about professional law.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_professional_medicine": { | |
"task": "mmlu_professional_medicine", | |
"task_alias": "professional_medicine", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "professional_medicine", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_professional_psychology": { | |
"task": "mmlu_professional_psychology", | |
"task_alias": "professional_psychology", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "professional_psychology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_public_relations": { | |
"task": "mmlu_public_relations", | |
"task_alias": "public_relations", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "public_relations", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about public relations.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_security_studies": { | |
"task": "mmlu_security_studies", | |
"task_alias": "security_studies", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "security_studies", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about security studies.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_sociology": { | |
"task": "mmlu_sociology", | |
"task_alias": "sociology", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "sociology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about sociology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_us_foreign_policy": { | |
"task": "mmlu_us_foreign_policy", | |
"task_alias": "us_foreign_policy", | |
"group": "mmlu_social_sciences", | |
"group_alias": "social_sciences", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "us_foreign_policy", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_virology": { | |
"task": "mmlu_virology", | |
"task_alias": "virology", | |
"group": "mmlu_other", | |
"group_alias": "other", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "virology", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about virology.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"mmlu_world_religions": { | |
"task": "mmlu_world_religions", | |
"task_alias": "world_religions", | |
"group": "mmlu_humanities", | |
"group_alias": "humanities", | |
"dataset_path": "hails/mmlu_no_train", | |
"dataset_name": "world_religions", | |
"dataset_kwargs": { | |
"trust_remote_code": true | |
}, | |
"test_split": "test", | |
"fewshot_split": "dev", | |
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", | |
"doc_to_target": "answer", | |
"doc_to_choice": [ | |
"A", | |
"B", | |
"C", | |
"D" | |
], | |
"description": "The following are multiple choice questions (with answers) about world religions.\n\n", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"fewshot_config": { | |
"sampler": "first_n" | |
}, | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"truthfulqa_gen": { | |
"task": "truthfulqa_gen", | |
"group": "truthfulqa", | |
"dataset_path": "truthful_qa", | |
"dataset_name": "generation", | |
"validation_split": "validation", | |
"process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n", | |
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}", | |
"doc_to_target": " ", | |
"process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "bleu_max", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "bleu_acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "bleu_diff", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge1_max", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge1_acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge1_diff", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge2_max", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge2_acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rouge2_diff", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rougeL_max", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rougeL_acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
}, | |
{ | |
"metric": "rougeL_diff", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "generate_until", | |
"generation_kwargs": { | |
"until": [ | |
"\n\n" | |
], | |
"do_sample": false | |
}, | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "question", | |
"metadata": { | |
"version": 3.0 | |
} | |
}, | |
"truthfulqa_mc1": { | |
"task": "truthfulqa_mc1", | |
"group": "truthfulqa", | |
"dataset_path": "truthful_qa", | |
"dataset_name": "multiple_choice", | |
"validation_split": "validation", | |
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", | |
"doc_to_target": 0, | |
"doc_to_choice": "{{mc1_targets.choices}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "question", | |
"metadata": { | |
"version": 2.0 | |
} | |
}, | |
"truthfulqa_mc2": { | |
"task": "truthfulqa_mc2", | |
"group": "truthfulqa", | |
"dataset_path": "truthful_qa", | |
"dataset_name": "multiple_choice", | |
"validation_split": "validation", | |
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", | |
"doc_to_target": 0, | |
"doc_to_choice": "{{mc2_targets.choices}}", | |
"process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "question", | |
"metadata": { | |
"version": 2.0 | |
} | |
}, | |
"winogrande": { | |
"task": "winogrande", | |
"group": "Open LLM Leaderboard", | |
"dataset_path": "winogrande", | |
"dataset_name": "winogrande_xl", | |
"training_split": "train", | |
"validation_split": "validation", | |
"fewshot_split": "train", | |
"doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", | |
"doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", | |
"doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 5, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": true, | |
"doc_to_decontamination_query": "sentence", | |
"metadata": { | |
"version": 1.0 | |
} | |
} | |
}, | |
"versions": { | |
"arc_challenge": 1.0, | |
"eq_bench": 2.1, | |
"gsm8k": 3.0, | |
"hellaswag": 1.0, | |
"mmlu_abstract_algebra": 0.0, | |
"mmlu_anatomy": 0.0, | |
"mmlu_astronomy": 0.0, | |
"mmlu_business_ethics": 0.0, | |
"mmlu_clinical_knowledge": 0.0, | |
"mmlu_college_biology": 0.0, | |
"mmlu_college_chemistry": 0.0, | |
"mmlu_college_computer_science": 0.0, | |
"mmlu_college_mathematics": 0.0, | |
"mmlu_college_medicine": 0.0, | |
"mmlu_college_physics": 0.0, | |
"mmlu_computer_security": 0.0, | |
"mmlu_conceptual_physics": 0.0, | |
"mmlu_econometrics": 0.0, | |
"mmlu_electrical_engineering": 0.0, | |
"mmlu_elementary_mathematics": 0.0, | |
"mmlu_formal_logic": 0.0, | |
"mmlu_global_facts": 0.0, | |
"mmlu_high_school_biology": 0.0, | |
"mmlu_high_school_chemistry": 0.0, | |
"mmlu_high_school_computer_science": 0.0, | |
"mmlu_high_school_european_history": 0.0, | |
"mmlu_high_school_geography": 0.0, | |
"mmlu_high_school_government_and_politics": 0.0, | |
"mmlu_high_school_macroeconomics": 0.0, | |
"mmlu_high_school_mathematics": 0.0, | |
"mmlu_high_school_microeconomics": 0.0, | |
"mmlu_high_school_physics": 0.0, | |
"mmlu_high_school_psychology": 0.0, | |
"mmlu_high_school_statistics": 0.0, | |
"mmlu_high_school_us_history": 0.0, | |
"mmlu_high_school_world_history": 0.0, | |
"mmlu_human_aging": 0.0, | |
"mmlu_human_sexuality": 0.0, | |
"mmlu_international_law": 0.0, | |
"mmlu_jurisprudence": 0.0, | |
"mmlu_logical_fallacies": 0.0, | |
"mmlu_machine_learning": 0.0, | |
"mmlu_management": 0.0, | |
"mmlu_marketing": 0.0, | |
"mmlu_medical_genetics": 0.0, | |
"mmlu_miscellaneous": 0.0, | |
"mmlu_moral_disputes": 0.0, | |
"mmlu_moral_scenarios": 0.0, | |
"mmlu_nutrition": 0.0, | |
"mmlu_philosophy": 0.0, | |
"mmlu_prehistory": 0.0, | |
"mmlu_professional_accounting": 0.0, | |
"mmlu_professional_law": 0.0, | |
"mmlu_professional_medicine": 0.0, | |
"mmlu_professional_psychology": 0.0, | |
"mmlu_public_relations": 0.0, | |
"mmlu_security_studies": 0.0, | |
"mmlu_sociology": 0.0, | |
"mmlu_us_foreign_policy": 0.0, | |
"mmlu_virology": 0.0, | |
"mmlu_world_religions": 0.0, | |
"truthfulqa_gen": 3.0, | |
"truthfulqa_mc1": 2.0, | |
"truthfulqa_mc2": 2.0, | |
"winogrande": 1.0 | |
}, | |
"n-shot": { | |
"Open LLM Leaderboard": 5, | |
"arc_challenge": 25, | |
"eq_bench": 0, | |
"gsm8k": 5, | |
"hellaswag": 10, | |
"mmlu": 0, | |
"mmlu_abstract_algebra": 5, | |
"mmlu_anatomy": 5, | |
"mmlu_astronomy": 5, | |
"mmlu_business_ethics": 5, | |
"mmlu_clinical_knowledge": 5, | |
"mmlu_college_biology": 5, | |
"mmlu_college_chemistry": 5, | |
"mmlu_college_computer_science": 5, | |
"mmlu_college_mathematics": 5, | |
"mmlu_college_medicine": 5, | |
"mmlu_college_physics": 5, | |
"mmlu_computer_security": 5, | |
"mmlu_conceptual_physics": 5, | |
"mmlu_econometrics": 5, | |
"mmlu_electrical_engineering": 5, | |
"mmlu_elementary_mathematics": 5, | |
"mmlu_formal_logic": 5, | |
"mmlu_global_facts": 5, | |
"mmlu_high_school_biology": 5, | |
"mmlu_high_school_chemistry": 5, | |
"mmlu_high_school_computer_science": 5, | |
"mmlu_high_school_european_history": 5, | |
"mmlu_high_school_geography": 5, | |
"mmlu_high_school_government_and_politics": 5, | |
"mmlu_high_school_macroeconomics": 5, | |
"mmlu_high_school_mathematics": 5, | |
"mmlu_high_school_microeconomics": 5, | |
"mmlu_high_school_physics": 5, | |
"mmlu_high_school_psychology": 5, | |
"mmlu_high_school_statistics": 5, | |
"mmlu_high_school_us_history": 5, | |
"mmlu_high_school_world_history": 5, | |
"mmlu_human_aging": 5, | |
"mmlu_human_sexuality": 5, | |
"mmlu_humanities": 5, | |
"mmlu_international_law": 5, | |
"mmlu_jurisprudence": 5, | |
"mmlu_logical_fallacies": 5, | |
"mmlu_machine_learning": 5, | |
"mmlu_management": 5, | |
"mmlu_marketing": 5, | |
"mmlu_medical_genetics": 5, | |
"mmlu_miscellaneous": 5, | |
"mmlu_moral_disputes": 5, | |
"mmlu_moral_scenarios": 5, | |
"mmlu_nutrition": 5, | |
"mmlu_other": 5, | |
"mmlu_philosophy": 5, | |
"mmlu_prehistory": 5, | |
"mmlu_professional_accounting": 5, | |
"mmlu_professional_law": 5, | |
"mmlu_professional_medicine": 5, | |
"mmlu_professional_psychology": 5, | |
"mmlu_public_relations": 5, | |
"mmlu_security_studies": 5, | |
"mmlu_social_sciences": 5, | |
"mmlu_sociology": 5, | |
"mmlu_stem": 5, | |
"mmlu_us_foreign_policy": 5, | |
"mmlu_virology": 5, | |
"mmlu_world_religions": 5, | |
"truthfulqa": 0, | |
"truthfulqa_gen": 0, | |
"truthfulqa_mc1": 0, | |
"truthfulqa_mc2": 0, | |
"winogrande": 5 | |
}, | |
"higher_is_better": { | |
"Open LLM Leaderboard": { | |
"exact_match": true, | |
"acc": true, | |
"bleu_max": true, | |
"bleu_acc": true, | |
"bleu_diff": true, | |
"rouge1_max": true, | |
"rouge1_acc": true, | |
"rouge1_diff": true, | |
"rouge2_max": true, | |
"rouge2_acc": true, | |
"rouge2_diff": true, | |
"rougeL_max": true, | |
"rougeL_acc": true, | |
"rougeL_diff": true, | |
"acc_norm": true | |
}, | |
"arc_challenge": { | |
"acc": true, | |
"acc_norm": true | |
}, | |
"eq_bench": { | |
"eqbench": true, | |
"percent_parseable": true | |
}, | |
"gsm8k": { | |
"exact_match": true | |
}, | |
"hellaswag": { | |
"acc": true, | |
"acc_norm": true | |
}, | |
"mmlu": { | |
"acc": true | |
}, | |
"mmlu_abstract_algebra": { | |
"acc": true | |
}, | |
"mmlu_anatomy": { | |
"acc": true | |
}, | |
"mmlu_astronomy": { | |
"acc": true | |
}, | |
"mmlu_business_ethics": { | |
"acc": true | |
}, | |
"mmlu_clinical_knowledge": { | |
"acc": true | |
}, | |
"mmlu_college_biology": { | |
"acc": true | |
}, | |
"mmlu_college_chemistry": { | |
"acc": true | |
}, | |
"mmlu_college_computer_science": { | |
"acc": true | |
}, | |
"mmlu_college_mathematics": { | |
"acc": true | |
}, | |
"mmlu_college_medicine": { | |
"acc": true | |
}, | |
"mmlu_college_physics": { | |
"acc": true | |
}, | |
"mmlu_computer_security": { | |
"acc": true | |
}, | |
"mmlu_conceptual_physics": { | |
"acc": true | |
}, | |
"mmlu_econometrics": { | |
"acc": true | |
}, | |
"mmlu_electrical_engineering": { | |
"acc": true | |
}, | |
"mmlu_elementary_mathematics": { | |
"acc": true | |
}, | |
"mmlu_formal_logic": { | |
"acc": true | |
}, | |
"mmlu_global_facts": { | |
"acc": true | |
}, | |
"mmlu_high_school_biology": { | |
"acc": true | |
}, | |
"mmlu_high_school_chemistry": { | |
"acc": true | |
}, | |
"mmlu_high_school_computer_science": { | |
"acc": true | |
}, | |
"mmlu_high_school_european_history": { | |
"acc": true | |
}, | |
"mmlu_high_school_geography": { | |
"acc": true | |
}, | |
"mmlu_high_school_government_and_politics": { | |
"acc": true | |
}, | |
"mmlu_high_school_macroeconomics": { | |
"acc": true | |
}, | |
"mmlu_high_school_mathematics": { | |
"acc": true | |
}, | |
"mmlu_high_school_microeconomics": { | |
"acc": true | |
}, | |
"mmlu_high_school_physics": { | |
"acc": true | |
}, | |
"mmlu_high_school_psychology": { | |
"acc": true | |
}, | |
"mmlu_high_school_statistics": { | |
"acc": true | |
}, | |
"mmlu_high_school_us_history": { | |
"acc": true | |
}, | |
"mmlu_high_school_world_history": { | |
"acc": true | |
}, | |
"mmlu_human_aging": { | |
"acc": true | |
}, | |
"mmlu_human_sexuality": { | |
"acc": true | |
}, | |
"mmlu_humanities": { | |
"acc": true | |
}, | |
"mmlu_international_law": { | |
"acc": true | |
}, | |
"mmlu_jurisprudence": { | |
"acc": true | |
}, | |
"mmlu_logical_fallacies": { | |
"acc": true | |
}, | |
"mmlu_machine_learning": { | |
"acc": true | |
}, | |
"mmlu_management": { | |
"acc": true | |
}, | |
"mmlu_marketing": { | |
"acc": true | |
}, | |
"mmlu_medical_genetics": { | |
"acc": true | |
}, | |
"mmlu_miscellaneous": { | |
"acc": true | |
}, | |
"mmlu_moral_disputes": { | |
"acc": true | |
}, | |
"mmlu_moral_scenarios": { | |
"acc": true | |
}, | |
"mmlu_nutrition": { | |
"acc": true | |
}, | |
"mmlu_other": { | |
"acc": true | |
}, | |
"mmlu_philosophy": { | |
"acc": true | |
}, | |
"mmlu_prehistory": { | |
"acc": true | |
}, | |
"mmlu_professional_accounting": { | |
"acc": true | |
}, | |
"mmlu_professional_law": { | |
"acc": true | |
}, | |
"mmlu_professional_medicine": { | |
"acc": true | |
}, | |
"mmlu_professional_psychology": { | |
"acc": true | |
}, | |
"mmlu_public_relations": { | |
"acc": true | |
}, | |
"mmlu_security_studies": { | |
"acc": true | |
}, | |
"mmlu_social_sciences": { | |
"acc": true | |
}, | |
"mmlu_sociology": { | |
"acc": true | |
}, | |
"mmlu_stem": { | |
"acc": true | |
}, | |
"mmlu_us_foreign_policy": { | |
"acc": true | |
}, | |
"mmlu_virology": { | |
"acc": true | |
}, | |
"mmlu_world_religions": { | |
"acc": true | |
}, | |
"truthfulqa": { | |
"bleu_max": true, | |
"bleu_acc": true, | |
"bleu_diff": true, | |
"rouge1_max": true, | |
"rouge1_acc": true, | |
"rouge1_diff": true, | |
"rouge2_max": true, | |
"rouge2_acc": true, | |
"rouge2_diff": true, | |
"rougeL_max": true, | |
"rougeL_acc": true, | |
"rougeL_diff": true, | |
"acc": true | |
}, | |
"truthfulqa_gen": { | |
"bleu_max": true, | |
"bleu_acc": true, | |
"bleu_diff": true, | |
"rouge1_max": true, | |
"rouge1_acc": true, | |
"rouge1_diff": true, | |
"rouge2_max": true, | |
"rouge2_acc": true, | |
"rouge2_diff": true, | |
"rougeL_max": true, | |
"rougeL_acc": true, | |
"rougeL_diff": true | |
}, | |
"truthfulqa_mc1": { | |
"acc": true | |
}, | |
"truthfulqa_mc2": { | |
"acc": true | |
}, | |
"winogrande": { | |
"acc": true | |
} | |
}, | |
"n-samples": { | |
"gsm8k": { | |
"original": 1319, | |
"effective": 1319 | |
}, | |
"winogrande": { | |
"original": 1267, | |
"effective": 1267 | |
}, | |
"mmlu_high_school_european_history": { | |
"original": 165, | |
"effective": 165 | |
}, | |
"mmlu_formal_logic": { | |
"original": 126, | |
"effective": 126 | |
}, | |
"mmlu_moral_scenarios": { | |
"original": 895, | |
"effective": 895 | |
}, | |
"mmlu_moral_disputes": { | |
"original": 346, | |
"effective": 346 | |
}, | |
"mmlu_world_religions": { | |
"original": 171, | |
"effective": 171 | |
}, | |
"mmlu_high_school_world_history": { | |
"original": 237, | |
"effective": 237 | |
}, | |
"mmlu_logical_fallacies": { | |
"original": 163, | |
"effective": 163 | |
}, | |
"mmlu_international_law": { | |
"original": 121, | |
"effective": 121 | |
}, | |
"mmlu_philosophy": { | |
"original": 311, | |
"effective": 311 | |
}, | |
"mmlu_professional_law": { | |
"original": 1534, | |
"effective": 1534 | |
}, | |
"mmlu_high_school_us_history": { | |
"original": 204, | |
"effective": 204 | |
}, | |
"mmlu_prehistory": { | |
"original": 324, | |
"effective": 324 | |
}, | |
"mmlu_jurisprudence": { | |
"original": 108, | |
"effective": 108 | |
}, | |
"mmlu_high_school_psychology": { | |
"original": 545, | |
"effective": 545 | |
}, | |
"mmlu_sociology": { | |
"original": 201, | |
"effective": 201 | |
}, | |
"mmlu_high_school_government_and_politics": { | |
"original": 193, | |
"effective": 193 | |
}, | |
"mmlu_public_relations": { | |
"original": 110, | |
"effective": 110 | |
}, | |
"mmlu_high_school_macroeconomics": { | |
"original": 390, | |
"effective": 390 | |
}, | |
"mmlu_high_school_geography": { | |
"original": 198, | |
"effective": 198 | |
}, | |
"mmlu_high_school_microeconomics": { | |
"original": 238, | |
"effective": 238 | |
}, | |
"mmlu_security_studies": { | |
"original": 245, | |
"effective": 245 | |
}, | |
"mmlu_us_foreign_policy": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_professional_psychology": { | |
"original": 612, | |
"effective": 612 | |
}, | |
"mmlu_human_sexuality": { | |
"original": 131, | |
"effective": 131 | |
}, | |
"mmlu_econometrics": { | |
"original": 114, | |
"effective": 114 | |
}, | |
"mmlu_professional_medicine": { | |
"original": 272, | |
"effective": 272 | |
}, | |
"mmlu_professional_accounting": { | |
"original": 282, | |
"effective": 282 | |
}, | |
"mmlu_management": { | |
"original": 103, | |
"effective": 103 | |
}, | |
"mmlu_global_facts": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_college_medicine": { | |
"original": 173, | |
"effective": 173 | |
}, | |
"mmlu_business_ethics": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_nutrition": { | |
"original": 306, | |
"effective": 306 | |
}, | |
"mmlu_medical_genetics": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_virology": { | |
"original": 166, | |
"effective": 166 | |
}, | |
"mmlu_human_aging": { | |
"original": 223, | |
"effective": 223 | |
}, | |
"mmlu_clinical_knowledge": { | |
"original": 265, | |
"effective": 265 | |
}, | |
"mmlu_miscellaneous": { | |
"original": 783, | |
"effective": 783 | |
}, | |
"mmlu_marketing": { | |
"original": 234, | |
"effective": 234 | |
}, | |
"mmlu_high_school_chemistry": { | |
"original": 203, | |
"effective": 203 | |
}, | |
"mmlu_college_physics": { | |
"original": 102, | |
"effective": 102 | |
}, | |
"mmlu_college_mathematics": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_astronomy": { | |
"original": 152, | |
"effective": 152 | |
}, | |
"mmlu_high_school_physics": { | |
"original": 151, | |
"effective": 151 | |
}, | |
"mmlu_computer_security": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_elementary_mathematics": { | |
"original": 378, | |
"effective": 378 | |
}, | |
"mmlu_electrical_engineering": { | |
"original": 145, | |
"effective": 145 | |
}, | |
"mmlu_college_biology": { | |
"original": 144, | |
"effective": 144 | |
}, | |
"mmlu_machine_learning": { | |
"original": 112, | |
"effective": 112 | |
}, | |
"mmlu_high_school_biology": { | |
"original": 310, | |
"effective": 310 | |
}, | |
"mmlu_high_school_mathematics": { | |
"original": 270, | |
"effective": 270 | |
}, | |
"mmlu_anatomy": { | |
"original": 135, | |
"effective": 135 | |
}, | |
"mmlu_high_school_statistics": { | |
"original": 216, | |
"effective": 216 | |
}, | |
"mmlu_college_chemistry": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_conceptual_physics": { | |
"original": 235, | |
"effective": 235 | |
}, | |
"mmlu_high_school_computer_science": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_college_computer_science": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"mmlu_abstract_algebra": { | |
"original": 100, | |
"effective": 100 | |
}, | |
"truthfulqa_gen": { | |
"original": 817, | |
"effective": 817 | |
}, | |
"truthfulqa_mc1": { | |
"original": 817, | |
"effective": 817 | |
}, | |
"truthfulqa_mc2": { | |
"original": 817, | |
"effective": 817 | |
}, | |
"hellaswag": { | |
"original": 10042, | |
"effective": 10042 | |
}, | |
"arc_challenge": { | |
"original": 1172, | |
"effective": 1172 | |
}, | |
"eq_bench": { | |
"original": 171, | |
"effective": 171 | |
} | |
}, | |
"config": { | |
"model": "hf", | |
"model_args": "pretrained=FallenMerick/Smart-Lemon-Cookie-7B,trust_remote_code=True", | |
"model_num_parameters": 7241732096, | |
"model_dtype": "torch.float16", | |
"model_revision": "main", | |
"model_sha": "24a18cbcb94c55811593f89026c6fe51331f4a57", | |
"batch_size": "auto", | |
"batch_sizes": [ | |
2 | |
], | |
"device": null, | |
"use_cache": null, | |
"limit": null, | |
"bootstrap_iters": 100000, | |
"gen_kwargs": null, | |
"random_seed": 0, | |
"numpy_seed": 1234, | |
"torch_seed": 1234, | |
"fewshot_seed": 1234 | |
}, | |
"git_hash": null, | |
"date": 1719550043.4933457, | |
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect", | |
"transformers_version": "4.41.2", | |
"upper_git_hash": null, | |
"tokenizer_pad_token": [ | |
"<unk>", | |
0 | |
], | |
"tokenizer_eos_token": [ | |
"</s>", | |
2 | |
], | |
"tokenizer_bos_token": [ | |
"<s>", | |
1 | |
], | |
"eot_token_id": 2, | |
"max_length": 32768, | |
"task_hashes": {}, | |
"model_source": "hf", | |
"model_name": "FallenMerick/Smart-Lemon-Cookie-7B", | |
"model_name_sanitized": "FallenMerick__Smart-Lemon-Cookie-7B", | |
"system_instruction": null, | |
"system_instruction_sha": null, | |
"fewshot_as_multiturn": false, | |
"chat_template": null, | |
"chat_template_sha": null, | |
"start_time": 102426.774034499, | |
"end_time": 138957.776397903, | |
"total_evaluation_time_seconds": "36531.00236340401" | |
} |