File size: 2,495 Bytes
fda9216
024ecb0
fda9216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: mistral_7b_gsm8k_ep2_1e-5_dpo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/hbin0701/DPO/runs/8aboqbe6)
# mistral_7b_gsm8k_ep2_1e-5_dpo

This model is a fine-tuned version of [/home/hyeonbin/self_train/Verifiers/models/mistral_7b_gsm8k_ep2_1e-5_rft_round1](https://huggingface.co//home/hyeonbin/self_train/Verifiers/models/mistral_7b_gsm8k_ep2_1e-5_rft_round1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0005
- Rewards/chosen: -1.7120
- Rewards/rejected: -14.3548
- Rewards/accuracies: 1.0
- Rewards/margins: 12.6428
- Logps/rejected: -1466.6733
- Logps/chosen: -208.2280
- Logits/rejected: -3.2168
- Logits/chosen: -2.3996

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.014         | 1.0   | 7066 | 0.0005          | -1.7120        | -14.3548         | 1.0                | 12.6428         | -1466.6733     | -208.2280    | -3.2168         | -2.3996       |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1