--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - tweet_sentiment_multilingual metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_beta2 results: - task: name: Text Classification type: text-classification dataset: name: tweet_sentiment_multilingual type: tweet_sentiment_multilingual config: all split: validation args: all metrics: - name: Accuracy type: accuracy value: 0.3333333333333333 - name: F1 type: f1 value: 0.16666666666666666 --- # scenario-TCR-XLMV_data-cardiffnlp_tweet_sentiment_multilingual_all_beta2 This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the tweet_sentiment_multilingual dataset. It achieves the following results on the evaluation set: - Loss: 1.0989 - Accuracy: 0.3333 - F1: 0.1667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 67 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0974 | 1.09 | 500 | 1.0989 | 0.3333 | 0.1667 | | 1.1002 | 2.17 | 1000 | 1.0986 | 0.3333 | 0.1667 | | 1.0992 | 3.26 | 1500 | 1.0992 | 0.3333 | 0.1667 | | 1.0997 | 4.35 | 2000 | 1.0988 | 0.3333 | 0.1667 | | 1.0996 | 5.43 | 2500 | 1.0988 | 0.3333 | 0.1667 | | 1.0996 | 6.52 | 3000 | 1.0989 | 0.3333 | 0.1667 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3