--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV-XCOPA-4_data-xcopa_all results: [] --- # scenario-TCR-XLMV-XCOPA-4_data-xcopa_all This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6931 - Accuracy: 0.5017 - F1: 0.4736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 4824 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.38 | 5 | 0.6931 | 0.4967 | 0.4711 | | No log | 0.77 | 10 | 0.6931 | 0.5258 | 0.5133 | | No log | 1.15 | 15 | 0.6931 | 0.5433 | 0.5456 | | No log | 1.54 | 20 | 0.6931 | 0.5267 | 0.5145 | | No log | 1.92 | 25 | 0.6931 | 0.5208 | 0.4987 | | No log | 2.31 | 30 | 0.6931 | 0.5183 | 0.4921 | | No log | 2.69 | 35 | 0.6931 | 0.5242 | 0.4987 | | No log | 3.08 | 40 | 0.6931 | 0.5308 | 0.5151 | | No log | 3.46 | 45 | 0.6931 | 0.53 | 0.5138 | | No log | 3.85 | 50 | 0.6931 | 0.4833 | 0.4737 | | No log | 4.23 | 55 | 0.6931 | 0.51 | 0.4922 | | No log | 4.62 | 60 | 0.6931 | 0.5008 | 0.4759 | | No log | 5.0 | 65 | 0.6931 | 0.4817 | 0.4591 | | No log | 5.38 | 70 | 0.6931 | 0.5133 | 0.4859 | | No log | 5.77 | 75 | 0.6932 | 0.4642 | 0.4305 | | No log | 6.15 | 80 | 0.6932 | 0.4783 | 0.4360 | | No log | 6.54 | 85 | 0.6932 | 0.4658 | 0.4282 | | No log | 6.92 | 90 | 0.6932 | 0.455 | 0.4303 | | No log | 7.31 | 95 | 0.6932 | 0.4808 | 0.4578 | | No log | 7.69 | 100 | 0.6931 | 0.4967 | 0.4784 | | No log | 8.08 | 105 | 0.6931 | 0.5208 | 0.5081 | | No log | 8.46 | 110 | 0.6931 | 0.555 | 0.5444 | | No log | 8.85 | 115 | 0.6931 | 0.5508 | 0.5397 | | No log | 9.23 | 120 | 0.6931 | 0.5567 | 0.5430 | | No log | 9.62 | 125 | 0.6931 | 0.5458 | 0.5338 | | No log | 10.0 | 130 | 0.6931 | 0.5267 | 0.5044 | | No log | 10.38 | 135 | 0.6931 | 0.5175 | 0.4961 | | No log | 10.77 | 140 | 0.6931 | 0.5325 | 0.5185 | | No log | 11.15 | 145 | 0.6931 | 0.5283 | 0.5104 | | No log | 11.54 | 150 | 0.6931 | 0.5217 | 0.5 | | No log | 11.92 | 155 | 0.6931 | 0.5058 | 0.4812 | | No log | 12.31 | 160 | 0.6932 | 0.5 | 0.4792 | | No log | 12.69 | 165 | 0.6931 | 0.5017 | 0.4736 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3