Initial Commit
Browse files- README.md +94 -0
- config.json +27 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/xlm-v-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: scenario-TCR-XLMV-XCOPA-4_data-xcopa_all
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# scenario-TCR-XLMV-XCOPA-4_data-xcopa_all
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6931
|
22 |
+
- Accuracy: 0.5017
|
23 |
+
- F1: 0.4736
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-05
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 4824
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 500
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
54 |
+
| No log | 0.38 | 5 | 0.6931 | 0.4967 | 0.4711 |
|
55 |
+
| No log | 0.77 | 10 | 0.6931 | 0.5258 | 0.5133 |
|
56 |
+
| No log | 1.15 | 15 | 0.6931 | 0.5433 | 0.5456 |
|
57 |
+
| No log | 1.54 | 20 | 0.6931 | 0.5267 | 0.5145 |
|
58 |
+
| No log | 1.92 | 25 | 0.6931 | 0.5208 | 0.4987 |
|
59 |
+
| No log | 2.31 | 30 | 0.6931 | 0.5183 | 0.4921 |
|
60 |
+
| No log | 2.69 | 35 | 0.6931 | 0.5242 | 0.4987 |
|
61 |
+
| No log | 3.08 | 40 | 0.6931 | 0.5308 | 0.5151 |
|
62 |
+
| No log | 3.46 | 45 | 0.6931 | 0.53 | 0.5138 |
|
63 |
+
| No log | 3.85 | 50 | 0.6931 | 0.4833 | 0.4737 |
|
64 |
+
| No log | 4.23 | 55 | 0.6931 | 0.51 | 0.4922 |
|
65 |
+
| No log | 4.62 | 60 | 0.6931 | 0.5008 | 0.4759 |
|
66 |
+
| No log | 5.0 | 65 | 0.6931 | 0.4817 | 0.4591 |
|
67 |
+
| No log | 5.38 | 70 | 0.6931 | 0.5133 | 0.4859 |
|
68 |
+
| No log | 5.77 | 75 | 0.6932 | 0.4642 | 0.4305 |
|
69 |
+
| No log | 6.15 | 80 | 0.6932 | 0.4783 | 0.4360 |
|
70 |
+
| No log | 6.54 | 85 | 0.6932 | 0.4658 | 0.4282 |
|
71 |
+
| No log | 6.92 | 90 | 0.6932 | 0.455 | 0.4303 |
|
72 |
+
| No log | 7.31 | 95 | 0.6932 | 0.4808 | 0.4578 |
|
73 |
+
| No log | 7.69 | 100 | 0.6931 | 0.4967 | 0.4784 |
|
74 |
+
| No log | 8.08 | 105 | 0.6931 | 0.5208 | 0.5081 |
|
75 |
+
| No log | 8.46 | 110 | 0.6931 | 0.555 | 0.5444 |
|
76 |
+
| No log | 8.85 | 115 | 0.6931 | 0.5508 | 0.5397 |
|
77 |
+
| No log | 9.23 | 120 | 0.6931 | 0.5567 | 0.5430 |
|
78 |
+
| No log | 9.62 | 125 | 0.6931 | 0.5458 | 0.5338 |
|
79 |
+
| No log | 10.0 | 130 | 0.6931 | 0.5267 | 0.5044 |
|
80 |
+
| No log | 10.38 | 135 | 0.6931 | 0.5175 | 0.4961 |
|
81 |
+
| No log | 10.77 | 140 | 0.6931 | 0.5325 | 0.5185 |
|
82 |
+
| No log | 11.15 | 145 | 0.6931 | 0.5283 | 0.5104 |
|
83 |
+
| No log | 11.54 | 150 | 0.6931 | 0.5217 | 0.5 |
|
84 |
+
| No log | 11.92 | 155 | 0.6931 | 0.5058 | 0.4812 |
|
85 |
+
| No log | 12.31 | 160 | 0.6932 | 0.5 | 0.4792 |
|
86 |
+
| No log | 12.69 | 165 | 0.6931 | 0.5017 | 0.4736 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.33.3
|
92 |
+
- Pytorch 2.1.1+cu121
|
93 |
+
- Datasets 2.14.5
|
94 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/xlm-v-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForMultipleChoice"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.33.3",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 901629
|
27 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:062b49ff5f54b5deaa7fa254d8a76aba186979cbf6178e3f96451b4b29c43349
|
3 |
+
size 3114045230
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:714325961e1308f2b4080e783f2d312629d98a7627f510291e612637f70e2bdf
|
3 |
+
size 4536
|