--- license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.846210601990238 - name: F1 type: f1 value: 0.8244135214839245 --- # scenario-TCR-XLMV-4_data-AmazonScience_massive_all_1_1 This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8322 - Accuracy: 0.8462 - F1: 0.8244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 777 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.595 | 0.27 | 5000 | 0.7040 | 0.8241 | 0.7720 | | 0.4654 | 0.53 | 10000 | 0.6468 | 0.8410 | 0.8027 | | 0.3838 | 0.8 | 15000 | 0.6802 | 0.8399 | 0.7994 | | 0.2831 | 1.07 | 20000 | 0.7290 | 0.8471 | 0.8206 | | 0.274 | 1.34 | 25000 | 0.7192 | 0.8471 | 0.8141 | | 0.2598 | 1.6 | 30000 | 0.7145 | 0.8440 | 0.8215 | | 0.2501 | 1.87 | 35000 | 0.7347 | 0.8500 | 0.8245 | | 0.2022 | 2.14 | 40000 | 0.7809 | 0.8503 | 0.8223 | | 0.2164 | 2.41 | 45000 | 0.7481 | 0.8533 | 0.8280 | | 0.2008 | 2.67 | 50000 | 0.7684 | 0.8467 | 0.8252 | | 0.2015 | 2.94 | 55000 | 0.8170 | 0.8422 | 0.8160 | | 0.1716 | 3.21 | 60000 | 0.8603 | 0.8433 | 0.8186 | | 0.1643 | 3.47 | 65000 | 0.8221 | 0.8514 | 0.8279 | | 0.1816 | 3.74 | 70000 | 0.8322 | 0.8462 | 0.8244 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3