File size: 3,852 Bytes
71ce966 dfe58b3 71ce966 5ec609d 71ce966 33a2d99 b94bc33 33a2d99 b94bc33 71ce966 dfe58b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: mdeberta-v3-base-azsci-topics
results: []
datasets:
- hajili/azsci_topics
language:
- az
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-azsci-topics
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on [hajili/azsci_topics](https://huggingface.co/datasets/hajili/azsci_topics) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5213
- Precision: 0.8633
- Recall: 0.8759
- F1: 0.8685
- Accuracy: 0.8759
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 288 | 0.9919 | 0.6713 | 0.7465 | 0.6959 | 0.7465 |
| 1.4813 | 2.0 | 576 | 0.7035 | 0.7994 | 0.8238 | 0.8022 | 0.8238 |
| 1.4813 | 3.0 | 864 | 0.5605 | 0.8540 | 0.8568 | 0.8462 | 0.8568 |
| 0.5512 | 4.0 | 1152 | 0.5296 | 0.8615 | 0.8689 | 0.8623 | 0.8689 |
| 0.5512 | 5.0 | 1440 | 0.5213 | 0.8633 | 0.8759 | 0.8685 | 0.8759 |
### Evaluation results
| Topic | Precision | Recall | F1 | Support |
|:-------------------|------------:|---------:|---------:|----------:|
| Aqrar elmlər | 0.678571 | 0.703704 | 0.690909 | 27 |
| Astronomiya | 0 | 0 | 0 | 2 |
| Biologiya elmləri | 0.877358 | 0.885714 | 0.881517 | 105 |
| Coğrafiya | 0.833333 | 0.882353 | 0.857143 | 17 |
| Filologiya elmləri | 0.932203 | 0.942857 | 0.9375 | 175 |
| Fizika | 0.763158 | 0.852941 | 0.805556 | 34 |
| Fəlsəfə | 0.294118 | 0.357143 | 0.322581 | 14 |
| Hüquq elmləri | 0.965517 | 0.965517 | 0.965517 | 29 |
| Kimya | 0.828571 | 0.95082 | 0.885496 | 61 |
| Memarlıq | 0 | 0 | 0 | 5 |
| Mexanika | 0 | 0 | 0 | 4 |
| Pedaqogika | 0.882353 | 0.957447 | 0.918367 | 47 |
| Psixologiya | 1 | 0.722222 | 0.83871 | 18 |
| Riyaziyyat | 0.871795 | 0.871795 | 0.871795 | 39 |
| Siyasi elmlər | 0.807692 | 0.84 | 0.823529 | 25 |
| Sosiologiya | 0 | 0 | 0 | 4 |
| Sənətşünaslıq | 0.82 | 0.87234 | 0.845361 | 47 |
| Tarix | 0.846154 | 0.846154 | 0.846154 | 78 |
| Texnika elmləri | 0.822917 | 0.759615 | 0.79 | 104 |
| Tibb elmləri | 0.953947 | 0.97973 | 0.966667 | 148 |
| Yer elmləri | 0.7 | 0.538462 | 0.608696 | 13 |
| İqtisad elmləri | 0.948052 | 0.960526 | 0.954248 | 152 |
| Əczaçılıq elmləri | 0 | 0 | 0 | 4 |
| macro avg | 0.644597 | 0.647363 | 0.643902 | 1152 |
| weighted avg | 0.863306 | 0.875868 | 0.868519 | 1152 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |