Add training details
Browse files
README.md
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
---
|
|
|
|
|
2 |
library_name: span-marker
|
3 |
tags:
|
4 |
- span-marker
|
@@ -6,34 +8,145 @@ tags:
|
|
6 |
- ner
|
7 |
- named-entity-recognition
|
8 |
- generated_from_span_marker_trainer
|
|
|
|
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
12 |
- f1
|
13 |
-
widget:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
-
# SpanMarker
|
18 |
|
19 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
### Model Description
|
24 |
- **Model Type:** SpanMarker
|
25 |
-
|
26 |
- **Maximum Sequence Length:** 256 tokens
|
27 |
- **Maximum Entity Length:** 8 words
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
### Model Sources
|
33 |
|
34 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
35 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
## Uses
|
38 |
|
39 |
### Direct Use for Inference
|
@@ -42,9 +155,9 @@ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that ca
|
|
42 |
from span_marker import SpanMarkerModel
|
43 |
|
44 |
# Download from the 🤗 Hub
|
45 |
-
model = SpanMarkerModel.from_pretrained("
|
46 |
# Run inference
|
47 |
-
entities = model.predict("
|
48 |
```
|
49 |
|
50 |
### Downstream Use
|
@@ -56,7 +169,7 @@ You can finetune this model on your own dataset.
|
|
56 |
from span_marker import SpanMarkerModel, Trainer
|
57 |
|
58 |
# Download from the 🤗 Hub
|
59 |
-
model = SpanMarkerModel.from_pretrained("
|
60 |
|
61 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
62 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
@@ -68,30 +181,43 @@ trainer = Trainer(
|
|
68 |
eval_dataset=dataset["validation"],
|
69 |
)
|
70 |
trainer.train()
|
71 |
-
trainer.save_model("
|
72 |
```
|
73 |
</details>
|
74 |
|
75 |
-
<!--
|
76 |
-
### Out-of-Scope Use
|
77 |
-
|
78 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
79 |
-
-->
|
80 |
-
|
81 |
-
<!--
|
82 |
-
## Bias, Risks and Limitations
|
83 |
-
|
84 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
85 |
-
-->
|
86 |
-
|
87 |
-
<!--
|
88 |
-
### Recommendations
|
89 |
-
|
90 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
91 |
-
-->
|
92 |
|
93 |
## Training Details
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
### Framework Versions
|
96 |
- Python: 3.10.8
|
97 |
- SpanMarker: 1.5.0
|
@@ -111,21 +237,3 @@ trainer.save_model("span_marker_model_id-finetuned")
|
|
111 |
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
112 |
}
|
113 |
```
|
114 |
-
|
115 |
-
<!--
|
116 |
-
## Glossary
|
117 |
-
|
118 |
-
*Clearly define terms in order to be accessible across audiences.*
|
119 |
-
-->
|
120 |
-
|
121 |
-
<!--
|
122 |
-
## Model Card Authors
|
123 |
-
|
124 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
125 |
-
-->
|
126 |
-
|
127 |
-
<!--
|
128 |
-
## Model Card Contact
|
129 |
-
|
130 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
131 |
-
-->
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
library_name: span-marker
|
5 |
tags:
|
6 |
- span-marker
|
|
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
- generated_from_span_marker_trainer
|
11 |
+
datasets:
|
12 |
+
- DFKI-SLT/few-nerd
|
13 |
metrics:
|
14 |
- precision
|
15 |
- recall
|
16 |
- f1
|
17 |
+
widget:
|
18 |
+
- text: The WPC led the international peace movement in the decade after the Second
|
19 |
+
World War, but its failure to speak out against the Soviet suppression of the
|
20 |
+
1956 Hungarian uprising and the resumption of Soviet nuclear tests in 1961 marginalised
|
21 |
+
it, and in the 1960s it was eclipsed by the newer, non-aligned peace organizations
|
22 |
+
like the Campaign for Nuclear Disarmament.
|
23 |
+
- text: Most of the Steven Seagal movie "Under Siege "(co-starring Tommy Lee Jones)
|
24 |
+
was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and
|
25 |
+
open to the public.
|
26 |
+
- text: 'The Central African CFA franc (French: "franc CFA "or simply "franc ", ISO
|
27 |
+
4217 code: XAF) is the currency of six independent states in Central Africa: Cameroon,
|
28 |
+
Central African Republic, Chad, Republic of the Congo, Equatorial Guinea and Gabon.'
|
29 |
+
- text: Brenner conducted post-doctoral research at Brandeis University with Gregory
|
30 |
+
Petsko and then took his first academic position at Thomas Jefferson University
|
31 |
+
in 1996, moving to Dartmouth Medical School in 2003, where he served as Associate
|
32 |
+
Director for Basic Sciences at Norris Cotton Cancer Center.
|
33 |
+
- text: On Friday, October 27, 2017, the Senate of Spain (Senado) voted 214 to 47
|
34 |
+
to invoke Article 155 of the Spanish Constitution over Catalonia after the Catalan
|
35 |
+
Parliament declared the independence.
|
36 |
pipeline_tag: token-classification
|
37 |
+
base_model: numind/generic-entity_recognition-v1
|
38 |
+
model-index:
|
39 |
+
- name: SpanMarker with numind/generic-entity_recognition-v1 on FewNERD
|
40 |
+
results:
|
41 |
+
- task:
|
42 |
+
type: token-classification
|
43 |
+
name: Named Entity Recognition
|
44 |
+
dataset:
|
45 |
+
name: FewNERD
|
46 |
+
type: DFKI-SLT/few-nerd
|
47 |
+
split: eval
|
48 |
+
metrics:
|
49 |
+
- type: f1
|
50 |
+
value: 0.7039859923782059
|
51 |
+
name: F1
|
52 |
+
- type: precision
|
53 |
+
value: 0.7047408904377952
|
54 |
+
name: Precision
|
55 |
+
- type: recall
|
56 |
+
value: 0.7032327098380559
|
57 |
+
name: Recall
|
58 |
---
|
59 |
|
60 |
+
# SpanMarker with numind/generic-entity_recognition-v1 on FewNERD
|
61 |
|
62 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition-v1](https://huggingface.co/numind/generic-entity_recognition-v1) as the underlying encoder.
|
63 |
|
64 |
## Model Details
|
65 |
|
66 |
### Model Description
|
67 |
- **Model Type:** SpanMarker
|
68 |
+
- **Encoder:** [numind/generic-entity_recognition-v1](https://huggingface.co/numind/generic-entity_recognition-v1)
|
69 |
- **Maximum Sequence Length:** 256 tokens
|
70 |
- **Maximum Entity Length:** 8 words
|
71 |
+
- **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd)
|
72 |
+
- **Language:** en
|
73 |
+
- **License:** cc-by-nc-sa-4.0
|
74 |
|
75 |
### Model Sources
|
76 |
|
77 |
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
78 |
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
79 |
|
80 |
+
### Model Labels
|
81 |
+
| Label | Examples |
|
82 |
+
|:-----------------------------------------|:---------------------------------------------------------------------------------------------------------|
|
83 |
+
| art-broadcastprogram | "Corazones", "The Gale Storm Show : Oh , Susanna", "Street Cents" |
|
84 |
+
| art-film | "Shawshank Redemption", "L'Atlantide", "Bosch" |
|
85 |
+
| art-music | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover" |
|
86 |
+
| art-other | "The Today Show", "Venus de Milo", "Aphrodite of Milos" |
|
87 |
+
| art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" |
|
88 |
+
| art-writtenart | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time" |
|
89 |
+
| building-airport | "Sheremetyevo International Airport", "Newark Liberty International Airport", "Luton Airport" |
|
90 |
+
| building-hospital | "Yeungnam University Hospital", "Hokkaido University Hospital", "Memorial Sloan-Kettering Cancer Center" |
|
91 |
+
| building-hotel | "The Standard Hotel", "Flamingo Hotel", "Radisson Blu Sea Plaza Hotel" |
|
92 |
+
| building-library | "British Library", "Bayerische Staatsbibliothek", "Berlin State Library" |
|
93 |
+
| building-other | "Henry Ford Museum", "Alpha Recording Studios", "Communiplex" |
|
94 |
+
| building-restaurant | "Carnegie Deli", "Fatburger", "Trumbull" |
|
95 |
+
| building-sportsfacility | "Boston Garden", "Sports Center", "Glenn Warner Soccer Facility" |
|
96 |
+
| building-theater | "Sanders Theatre", "National Paris Opera", "Pittsburgh Civic Light Opera" |
|
97 |
+
| event-attack/battle/war/militaryconflict | "Easter Offensive", "Jurist", "Vietnam War" |
|
98 |
+
| event-disaster | "the 1912 North Mount Lyell Disaster", "1990s North Korean famine", "1693 Sicily earthquake" |
|
99 |
+
| event-election | "Elections to the European Parliament", "March 1898 elections", "1982 Mitcham and Morden by-election" |
|
100 |
+
| event-other | "Union for a Popular Movement", "Masaryk Democratic Movement", "Eastwood Scoring Stage" |
|
101 |
+
| event-protest | "Iranian Constitutional Revolution", "French Revolution", "Russian Revolution" |
|
102 |
+
| event-sportsevent | "World Cup", "National Champions", "Stanley Cup" |
|
103 |
+
| location-GPE | "Croatian", "Mediterranean Basin", "the Republic of Croatia" |
|
104 |
+
| location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" |
|
105 |
+
| location-island | "new Samsat district", "Laccadives", "Staten Island" |
|
106 |
+
| location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" |
|
107 |
+
| location-other | "Victoria line", "Northern City Line", "Cartuther" |
|
108 |
+
| location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" |
|
109 |
+
| location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" |
|
110 |
+
| organization-company | "Texas Chicken", "Dixy Chicken", "Church 's Chicken" |
|
111 |
+
| organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
|
112 |
+
| organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
|
113 |
+
| organization-media/newspaper | "Clash", "Al Jazeera", "TimeOut Melbourne" |
|
114 |
+
| organization-other | "Defence Sector C", "IAEA", "4th Army" |
|
115 |
+
| organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
|
116 |
+
| organization-religion | "UPCUSA", "Christian", "Jewish" |
|
117 |
+
| organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" |
|
118 |
+
| organization-sportsleague | "China League One", "NHL", "First Division" |
|
119 |
+
| organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" |
|
120 |
+
| other-astronomything | "Algol", "`` Caput Larvae ''", "Zodiac" |
|
121 |
+
| other-award | "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger", "GCON" |
|
122 |
+
| other-biologything | "N-terminal lipid", "Amphiphysin", "BAR" |
|
123 |
+
| other-chemicalthing | "uranium", "carbon dioxide", "sulfur" |
|
124 |
+
| other-currency | "$", "lac crore", "Travancore Rupee" |
|
125 |
+
| other-disease | "bladder cancer", "French Dysentery Epidemic of 1779", "hypothyroidism" |
|
126 |
+
| other-educationaldegree | "BSc ( Hons ) in physics", "Bachelor", "Master" |
|
127 |
+
| other-god | "Raijin", "Fujin", "El" |
|
128 |
+
| other-language | "Breton-speaking", "Latin", "English" |
|
129 |
+
| other-law | "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act", "Thirty Years ' Peace" |
|
130 |
+
| other-livingthing | "monkeys", "patchouli", "insects" |
|
131 |
+
| other-medical | "amitriptyline", "Pediatrics", "pediatrician" |
|
132 |
+
| person-actor | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss" |
|
133 |
+
| person-artist/author | "Hicks", "Gaetano Donizett", "George Axelrod" |
|
134 |
+
| person-athlete | "Tozawa", "Neville", "Jaguar" |
|
135 |
+
| person-director | "Richard Quine", "Bob Swaim", "Frank Darabont" |
|
136 |
+
| person-other | "Campbell", "Holden", "Richard Benson" |
|
137 |
+
| person-politician | "William", "Rivière", "Emeric" |
|
138 |
+
| person-scholar | "Wurdack", "Stalmine", "Stedman" |
|
139 |
+
| person-soldier | "Joachim Ziegler", "Helmuth Weidling", "Krukenberg" |
|
140 |
+
| product-airplane | "Spey-equipped FGR.2s", "EC135T2 CPDS", "Luton" |
|
141 |
+
| product-car | "Phantom", "100EX", "Corvettes - GT1 C6R" |
|
142 |
+
| product-food | "red grape", "yakiniku", "V. labrusca" |
|
143 |
+
| product-game | "Hardcore RPG", "Splinter Cell", "Airforce Delta" |
|
144 |
+
| product-other | "X11", "PDP-1", "Fairbottom Bobs" |
|
145 |
+
| product-ship | "Essex", "Congress", "HMS `` Chinkara ''" |
|
146 |
+
| product-software | "AmiPDF", "Wikipedia", "Apdf" |
|
147 |
+
| product-train | "55022", "Royal Scots Grey", "High Speed Trains" |
|
148 |
+
| product-weapon | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel" |
|
149 |
+
|
150 |
## Uses
|
151 |
|
152 |
### Direct Use for Inference
|
|
|
155 |
from span_marker import SpanMarkerModel
|
156 |
|
157 |
# Download from the 🤗 Hub
|
158 |
+
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
|
159 |
# Run inference
|
160 |
+
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
|
161 |
```
|
162 |
|
163 |
### Downstream Use
|
|
|
169 |
from span_marker import SpanMarkerModel, Trainer
|
170 |
|
171 |
# Download from the 🤗 Hub
|
172 |
+
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
|
173 |
|
174 |
# Specify a Dataset with "tokens" and "ner_tag" columns
|
175 |
dataset = load_dataset("conll2003") # For example CoNLL2003
|
|
|
181 |
eval_dataset=dataset["validation"],
|
182 |
)
|
183 |
trainer.train()
|
184 |
+
trainer.save_model("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super-finetuned")
|
185 |
```
|
186 |
</details>
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
## Training Details
|
190 |
|
191 |
+
### Training Set Metrics
|
192 |
+
| Training set | Min | Median | Max |
|
193 |
+
|:----------------------|:----|:--------|:----|
|
194 |
+
| Sentence length | 1 | 24.4945 | 267 |
|
195 |
+
| Entities per sentence | 0 | 2.5832 | 88 |
|
196 |
+
|
197 |
+
### Training Hyperparameters
|
198 |
+
- learning_rate: 1e-05
|
199 |
+
- train_batch_size: 16
|
200 |
+
- eval_batch_size: 16
|
201 |
+
- seed: 42
|
202 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
203 |
+
- lr_scheduler_type: linear
|
204 |
+
- lr_scheduler_warmup_ratio: 0.1
|
205 |
+
- num_epochs: 3
|
206 |
+
|
207 |
+
### Training Results
|
208 |
+
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|
209 |
+
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
|
210 |
+
| 0.2980 | 3000 | 0.0290 | 0.6503 | 0.6402 | 0.6452 | 0.9109 |
|
211 |
+
| 0.5961 | 6000 | 0.0250 | 0.6749 | 0.6794 | 0.6772 | 0.9202 |
|
212 |
+
| 0.8941 | 9000 | 0.0236 | 0.6908 | 0.6871 | 0.6889 | 0.9229 |
|
213 |
+
| 1.1921 | 12000 | 0.0234 | 0.6853 | 0.7007 | 0.6929 | 0.9239 |
|
214 |
+
| 1.4902 | 15000 | 0.0227 | 0.6966 | 0.6929 | 0.6948 | 0.9241 |
|
215 |
+
| 1.7882 | 18000 | 0.0221 | 0.7073 | 0.6922 | 0.6997 | 0.9250 |
|
216 |
+
| 2.0862 | 21000 | 0.0223 | 0.7003 | 0.6993 | 0.6998 | 0.9252 |
|
217 |
+
| 2.3843 | 24000 | 0.0222 | 0.6971 | 0.7027 | 0.6999 | 0.9254 |
|
218 |
+
| 2.6823 | 27000 | 0.0219 | 0.7044 | 0.7004 | 0.7024 | 0.9259 |
|
219 |
+
| 2.9803 | 30000 | 0.0219 | 0.7047 | 0.7032 | 0.7040 | 0.9261 |
|
220 |
+
|
221 |
### Framework Versions
|
222 |
- Python: 3.10.8
|
223 |
- SpanMarker: 1.5.0
|
|
|
237 |
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
238 |
}
|
239 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|