gsarti commited on
Commit
b93f937
1 Parent(s): 8c5ef8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -10
README.md CHANGED
@@ -1,23 +1,145 @@
1
  ---
2
- base_model: unsloth/gemma-2-2b-it-bnb-4bit
3
  language:
4
- - en
5
  license: apache-2.0
 
6
  tags:
7
  - text-generation-inference
8
- - transformers
9
  - unsloth
 
10
  - gemma2
11
  - trl
12
- - sft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
- # Uploaded model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- - **Developed by:** gsarti
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/gemma-2-2b-it-bnb-4bit
20
 
21
- This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
  ---
 
2
  language:
3
+ - it
4
  license: apache-2.0
5
+ library_name: transformers
6
  tags:
7
  - text-generation-inference
 
8
  - unsloth
9
+ - gemma
10
  - gemma2
11
  - trl
12
+ - word-game
13
+ - rebus
14
+ - italian
15
+ - word-puzzle
16
+ - crossword
17
+ datasets:
18
+ - gsarti/eureka-rebus
19
+ base_model: unsloth/gemma-2-2b-bnb-4bit
20
+
21
+ model-index:
22
+ - name: gsarti/gemma-2-2b-rebus-solver-fp16
23
+ results:
24
+ - task:
25
+ type: verbalized-rebus-solving
26
+ name: Verbalized Rebus Solving
27
+ dataset:
28
+ type: gsarti/eureka-rebus
29
+ name: EurekaRebus
30
+ config: llm_sft
31
+ split: test
32
+ revision: 0f24ebc3b66cd2f8968077a5eb058be1d5af2f05
33
+ metrics:
34
+ - type: exact_match
35
+ value: 0.43
36
+ name: First Pass Exact Match
37
+ - type: exact_match
38
+ value: 0.36
39
+ name: Solution Exact Match
40
  ---
41
 
42
+ # Gemma-2 2B Verbalized Rebus Solver 🇮🇹
43
+
44
+ This model is a parameter-efficient fine-tuned version of Gemma-2 2B trained for verbalized rebus solving in Italian, as part of the [release](https://huggingface.co/collections/gsarti/verbalized-rebus-clic-it-2024-66ab8f11cb04e68bdf4fb028) for our paper [Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses](https://arxiv.org/abs/2408.00584). The task of verbalized rebus solving consists of converting an encrypted sequence of letters and crossword definitions into a solution phrase matching the word lengths specified in the solution key. An example is provided below.
45
+
46
+ The model was trained in 4-bit precision for 5070 steps on the verbalized subset of the [EurekaRebus](https://huggingface.co/datasets/gsarti/eureka-rebus) using QLora via [Unsloth](https://github.com/unslothai/unsloth) and [TRL](https://github.com/huggingface/trl). This version has merged adapter weights in half precision, enabling out-of-the-box for usage with the `transformers` library.
47
+
48
+ We also provide [adapter checkpoints through training](https://huggingface.co/gsarti/gemma-2-2b-rebus-solver-adapters) and [8-bit GGUF](https://huggingface.co/gsarti/gsarti/gemma-2-2b-rebus-solver-Q8_0-GGUF) versions of this model for analysis and local execution.
49
+
50
+ ## Using the Model
51
+
52
+ The following example shows how to perform inference using Unsloth:
53
+
54
+ ```python
55
+ # With Unsloth (efficient, requires GPU)
56
+ from unsloth import FastLanguageModel
57
+
58
+ model, tokenizer = FastLanguageModel.from_pretrained(
59
+ model_name = "gsarti/gemma-2-2b-rebus-solver-fp16",
60
+ max_seq_length = 1248,
61
+ load_in_4bit = True,
62
+ )
63
+
64
+ # Inference
65
+ verbalized_rebus = "[Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]"
66
+ solution_key = "1 ' 5 6 5 3 3 1 14"
67
+ template = """<bos><start_of_turn>user
68
+ Risolvi gli indizi tra parentesi per ottenere una prima lettura, e usa la chiave di lettura per ottenere la soluzione del rebus.
69
+
70
+ Rebus: {rebus}
71
+ Chiave risolutiva: {key}<end_of_turn>
72
+ <start_of_turn>model"""
73
+ input = template.format(rebus=verbalized_rebus, key=solution_key)
74
+ inputs = tokenizer(input, return_tensors="pt")["input_ids"]
75
+ outputs = model.generate(input_ids = inputs, max_new_tokens = 500, use_cache = True)
76
+ model_generations = tokenizer.batch_decode(outputs)
77
+ print(model_generations[0])
78
+
79
+ # Procediamo alla risoluzione del rebus passo per passo:
80
+ # - [Materiale espulso dai vulcani] = lava
81
+ # - R O = R O
82
+ # - [Strumento del calzolaio] = lesina
83
+ # - [Si trovano ai lati del bacino] = anche
84
+ # - C I = C I
85
+ # - [Si ingrassano con la polenta] = oche
86
+ # - E I N = E I N
87
+ # - [Contiene scorte di cibi] = dispensa
88
+ # - B = B
89
+ # - [Isola in francese] = ile
90
+ #
91
+ # Prima lettura: lava R O lesina anche C I oche E I N silos B ile
92
+ #
93
+ # Ora componiamo la soluzione seguendo la chiave risolutiva:
94
+ # 1 = L
95
+ # ' = '
96
+ # 5 = avaro
97
+ # 6 = lesina
98
+ # 5 = anche
99
+ # 3 = ciò
100
+ # 3 = che
101
+ # 1 = è
102
+ # 14 = indispensabile
103
+ #
104
+ # Soluzione: L'avaro lesina anche ciò che è indispensabile
105
+ ```
106
+
107
+ See the official [code release](https://github.com/gsarti/verbalized-rebus) for more examples.
108
+
109
+ ### Local usage with Ollama
110
+
111
+ A ready-to-use local version of this model is hosted on the [Ollama Hub](https://ollama.com/gsarti/gemma2-2b-rebus-solver) and can be used as follows:
112
+
113
+ ```shell
114
+ ollama run gsarti/gemma2-2b-rebus-solver "Rebus: [Materiale espulso dai vulcani] R O [Strumento del calzolaio] [Si trovano ai lati del bacino] C I [Si ingrassano con la polenta] E I N [Contiene scorte di cibi] B [Isola in francese]\nChiave risolutiva: 1 ' 5 6 5 3 3 1 14"
115
+ ```
116
+
117
+ ## Limitations
118
+
119
+ **Lexical overfitting**: As remarked in the related publication, the model overfitted the set of definitions/answers for first pass words. As a result, words that were [explicitly witheld](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_words.txt) from the training set cause significant performance degradation when used as solutions for verbalized rebuses' definitions. You can compare model performances between [in-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/id_test.jsonl) and [out-of-domain](https://huggingface.co/datasets/gsarti/eureka-rebus/blob/main/ood_test.jsonl) test examples to verify this limitation.
120
+
121
+ ## Model curators
122
+
123
+ For problems or updates on this model, please contact [[email protected]](mailto:[email protected]).
124
+
125
+ ### Citation Information
126
+
127
+ If you use this model in your work, please cite our paper as follows:
128
+
129
+ ```bibtex
130
+ @article{sarti-etal-2024-rebus,
131
+ title = "Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses",
132
+ author = "Sarti, Gabriele and Caselli, Tommaso and Nissim, Malvina and Bisazza, Arianna",
133
+ journal = "ArXiv",
134
+ month = jul,
135
+ year = "2024",
136
+ volume = {abs/2408.00584},
137
+ url = {https://arxiv.org/abs/2408.00584},
138
+ }
139
+ ```
140
 
141
+ ## Acknowledgements
 
 
142
 
143
+ We are grateful to the [Associazione Culturale "Biblioteca Enigmistica Italiana - G. Panini"](http://www.enignet.it/home) for making its rebus collection freely accessible on the [Eureka5 platform](http://www.eureka5.it).
144
 
145
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)