Jlonge4 commited on
Commit
a9cc35d
1 Parent(s): 7b94199

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -10
README.md CHANGED
@@ -11,27 +11,119 @@ model-index:
11
  results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/re0kg3gs)
18
  # outputs
19
 
20
- This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset.
21
- It achieves the following results on the evaluation set:
22
- - Loss: 1.3147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Model description
25
 
26
- More information needed
27
 
28
  ## Intended uses & limitations
29
 
30
- More information needed
 
 
 
 
 
31
 
32
  ## Training and evaluation data
33
 
34
- More information needed
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
@@ -67,7 +159,6 @@ The following hyperparameters were used during training:
67
  | 0.3138 | 6.3158 | 60 | 1.2195 |
68
  | 0.5315 | 6.8421 | 65 | 1.3147 |
69
 
70
-
71
  ### Framework versions
72
 
73
  - PEFT 0.12.0
 
11
  results: []
12
  ---
13
 
 
 
 
14
  [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/josh-longenecker1-groundedai/phi3.5-hallucination/runs/re0kg3gs)
15
  # outputs
16
 
17
+ This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the HaluEval dataset for hallucination detection.
18
+
19
+ ## Merged Model Performance
20
+
21
+ This repository contains our hallucination evaluation PEFT adapter model.
22
+
23
+ ### Hallucination Detection Metrics
24
+
25
+ Our merged model achieves the following performance on a binary classification task for detecting hallucinations in language model outputs:
26
+
27
+ ```
28
+ precision recall f1-score support
29
+
30
+ 0 0.77 0.91 0.83 100
31
+ 1 0.89 0.73 0.80 100
32
+
33
+ accuracy 0.82 200
34
+ macro avg 0.83 0.82 0.82 200
35
+ weighted avg 0.83 0.82 0.82 200
36
+ ```
37
+
38
+ ### Model Usage
39
+ For best results, we recommend starting with the following prompting strategy (and encourage tweaks as you see fit):
40
+
41
+ ```python
42
+ def format_input(reference, query, response):
43
+ prompt = f"""Your job is to evaluate whether a machine learning model has hallucinated or not.
44
+ A hallucination occurs when the response is coherent but factually incorrect or nonsensical
45
+ outputs that are not grounded in the provided context.
46
+ You are given the following information:
47
+ ####INFO####
48
+ [Knowledge]: {reference}
49
+ [User Input]: {query}
50
+ [Model Response]: {response}
51
+ ####END INFO####
52
+ Based on the information provided is the model output a hallucination? Respond with only "yes" or "no"
53
+ """
54
+ return input
55
+
56
+ text = format_input(reference="The apple mac has the best hardware",
57
+ query='"What computer has the best software?",
58
+ response='Apple mac')
59
+
60
+ messages = [
61
+ {"role": "user", "content": text}
62
+ ]
63
+
64
+ pipe = pipeline(
65
+ "text-generation",
66
+ model=base_model,
67
+ model_kwargs={"attn_implementation": attn_implementation, "torch_dtype": torch.float16},
68
+ tokenizer=tokenizer,
69
+ )
70
+ generation_args = {
71
+ "max_new_tokens": 2,
72
+ "return_full_text": False,
73
+ "temperature": 0.01,
74
+ "do_sample": True,
75
+ }
76
+
77
+ output = pipe(messages, **generation_args)
78
+ print(f'Hallucination: {output['generated_text'].strip().lower()}')
79
+ # Hallucination: yes
80
+ ```
81
+
82
+ ### Comparison with Other Models
83
+
84
+ We compared our merged model's performance on the hallucination detection benchmark against several other state-of-the-art language models:
85
+
86
+ | Model | Precision | Recall | F1 |
87
+ |---------------------- |----------:|-------:|-------:|
88
+ | Our Merged Model | 0.77 | 0.91 | 0.83 |
89
+ | GPT-4 | 0.93 | 0.72 | 0.82 |
90
+ | GPT-4 Turbo | 0.97 | 0.70 | 0.81 |
91
+ | Gemini Pro | 0.89 | 0.53 | 0.67 |
92
+ | GPT-3.5 | 0.89 | 0.65 | 0.75 |
93
+ | GPT-3.5-turbo-instruct| 0.89 | 0.80 | 0.84 |
94
+ | Palm 2 (Text Bison) | 1.00 | 0.44 | 0.61 |
95
+ | Claude V2 | 0.80 | 0.95 | 0.87 |
96
+
97
+ Scores from arize/phoenix
98
+
99
+ As shown in the table, our merged model achieves competitive performance, with an F1 score of 0.82, matching or outperforming several state-of-the-art language models on this hallucination detection task.
100
 
101
  ## Model description
102
 
103
+ This model is a fine-tuned version of the Phi-3.5-mini-instruct model, specifically adapted for hallucination detection. It has been trained on the HaluEval dataset to identify when language model outputs contain hallucinations - responses that are coherent but factually incorrect or not grounded in the provided context.
104
 
105
  ## Intended uses & limitations
106
 
107
+ This model is intended for use in evaluating the outputs of language models to detect potential hallucinations. It can be integrated into pipelines for content validation, fact-checking, or as a component in larger systems aimed at improving the reliability of AI-generated content.
108
+
109
+ Limitations:
110
+ - The model's performance may vary depending on the domain and complexity of the input.
111
+ - It may not catch all types of hallucinations, especially those that are subtle or require extensive domain knowledge.
112
+ - The model should be used as part of a broader strategy for ensuring AI output quality, not as a sole arbiter of truth.
113
 
114
  ## Training and evaluation data
115
 
116
+ This model was trained using the HaluEval dataset:
117
+
118
+ @misc{HaluEval,
119
+ author = {Junyi Li and Xiaoxue Cheng and Wayne Xin Zhao and Jian-Yun Nie and Ji-Rong Wen },
120
+ title = {HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models},
121
+ year = {2023},
122
+ journal={arXiv preprint arXiv:2305.11747},
123
+ url={https://arxiv.org/abs/2305.11747}
124
+ }
125
+
126
+ The HaluEval dataset is specifically designed for evaluating hallucinations in large language models, making it an ideal choice for training our hallucination detection model.
127
 
128
  ## Training procedure
129
 
 
159
  | 0.3138 | 6.3158 | 60 | 1.2195 |
160
  | 0.5315 | 6.8421 | 65 | 1.3147 |
161
 
 
162
  ### Framework versions
163
 
164
  - PEFT 0.12.0