--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: wav2vec2-base-960h-speech-commands results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8066546762589928 --- # wav2vec2-base-960h-speech-commands This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.1612 - Accuracy: 0.8067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.745 | 1.0 | 824 | 1.9237 | 0.7648 | | 0.5664 | 2.0 | 1648 | 1.1424 | 0.7878 | | 0.4337 | 3.0 | 2472 | 1.1234 | 0.8013 | | 0.3346 | 4.0 | 3296 | 1.1040 | 0.8035 | | 0.2683 | 5.0 | 4120 | 1.3128 | 0.7905 | | 0.3498 | 6.0 | 4944 | 1.2172 | 0.7972 | | 0.2556 | 7.0 | 5768 | 1.1906 | 0.7986 | | 0.226 | 8.0 | 6592 | 1.1081 | 0.8044 | | 0.2317 | 9.0 | 7416 | 1.1068 | 0.8049 | | 0.1144 | 10.0 | 8240 | 1.1612 | 0.8067 | | 0.2143 | 11.0 | 9064 | 1.1577 | 0.8031 | | 0.1668 | 12.0 | 9888 | 1.1343 | 0.8058 | | 0.2504 | 13.0 | 10712 | 1.0583 | 0.8067 | | 0.218 | 14.0 | 11536 | 1.0677 | 0.8026 | | 0.1025 | 15.0 | 12360 | 1.0690 | 0.8053 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1