File size: 1,464 Bytes
e6e6db8
2686a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215caf7
e6e6db8
 
2686a80
e6e6db8
78f7207
e6e6db8
2686a80
e6e6db8
2686a80
 
e6e6db8
2686a80
e6e6db8
78f7207
e6e6db8
2686a80
 
 
e6e6db8
2686a80
 
 
 
 
 
e6e6db8
d9b7328
e6e6db8
2686a80
 
e6e6db8
2686a80
 
e6e6db8
2686a80
e6e6db8
2686a80
 
 
e6e6db8
2686a80
e6e6db8
2686a80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- nroggendorff/eap
language:
- en
license: mit
tags:
- trl
- sft
- art
- code
- adam
- mistral
model-index:
- name: eap
  results: []
pipeline_tag: text-generation
---

# Edgar Allen Poe LLM

EAP is a language model fine-tuned on the [EAP dataset](https://huggingface.co/datasets/nroggendorff/eap) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the [Mistral 7b Model](mistralai/Mistral-7B-Instruct-v0.3)

## Features

- Utilizes SFT and TRL techniques for improved performance
- Supports English language

## Usage

To use the LLM, you can load the model using the Hugging Face Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/mistral-eap"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "[INST] Write a poem about tomatoes in the style of Poe.[/INST]"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```

## License

This project is licensed under the MIT License.