giulio98 commited on
Commit
fe0bc5e
1 Parent(s): 55b4a67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -14
README.md CHANGED
@@ -7,16 +7,10 @@ tags:
7
  datasets:
8
  - giulio98/xlcost-single-prompt
9
  widget:
10
- - text: "from transformer import"
11
- example_title: "Transformers"
12
- - text: "def print_hello_world():\n\t"
13
- example_title: "Hello World!"
14
- - text: "def get_file_size(filepath):"
15
- example_title: "File size"
16
- - text: "import numpy as"
17
- example_title: "Numpy"
18
  model-index:
19
- - name: codegen-350M-multi-xlcost-v2
20
  results:
21
  - task:
22
  name: Code Generation
@@ -43,8 +37,8 @@ You can load the CodeGen-350M-multi-xlcost model and tokenizer directly in `tran
43
 
44
  ```Python
45
  from transformers import AutoTokenizer, AutoModelForCausalLM
46
- tokenizer = AutoTokenizer.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2")
47
- model = AutoModelForCausalLM.from_pretrained("giulio98/codegen-350M-multi-xlcost-v2")
48
 
49
  text = tokenizer.eos_token + "\'\'\'\n" + "function to add two numbers" + "\n\'\'\'\n" + "###\n"
50
  input_ids = tokenizer(text, return_tensors="pt").input_ids
@@ -67,7 +61,7 @@ The model was finetuned on [XLCost-single-prompt](https://huggingface.co/dataset
67
  xlcost-text-to-code](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code). Below the hyperparameters.
68
 
69
 
70
- |------|------------------
71
  |Per device train batch size| 8 |
72
  |Context size| 1024 |
73
  |Training steps| 258|
@@ -84,8 +78,8 @@ The training was executed on 1 x V100 (16GB) GPU for 6h 42m
84
 
85
  We evaluated the model on the first 400 samples of XLCOST's [XLCost-single-prompt test split](https://huggingface.co/datasets/giulio98/xlcost-single-prompt/viewer/Python/test) and comparing the outputs of the generated codes with respect to the expected output using pass@k metric.
86
 
87
- | Metric | codegen-350M-multi-xlcost-v2 |
88
- |--------|-----|-----|
89
  |pass@1 | 3.70% |
90
  |pass@10 | 14.5% |
91
 
 
7
  datasets:
8
  - giulio98/xlcost-single-prompt
9
  widget:
10
+ - text: "'''\nfunction to add two numbers\n'''\n###\n"
11
+ example_title: "add two numbers"
 
 
 
 
 
 
12
  model-index:
13
+ - name: codegen-350M-multi-xlcost
14
  results:
15
  - task:
16
  name: Code Generation
 
37
 
38
  ```Python
39
  from transformers import AutoTokenizer, AutoModelForCausalLM
40
+ tokenizer = AutoTokenizer.from_pretrained("giulio98/codegen-350M-multi-xlcost")
41
+ model = AutoModelForCausalLM.from_pretrained("giulio98/codegen-350M-multi-xlcost")
42
 
43
  text = tokenizer.eos_token + "\'\'\'\n" + "function to add two numbers" + "\n\'\'\'\n" + "###\n"
44
  input_ids = tokenizer(text, return_tensors="pt").input_ids
 
61
  xlcost-text-to-code](https://huggingface.co/datasets/codeparrot/xlcost-text-to-code). Below the hyperparameters.
62
 
63
 
64
+ |------|------------------|
65
  |Per device train batch size| 8 |
66
  |Context size| 1024 |
67
  |Training steps| 258|
 
78
 
79
  We evaluated the model on the first 400 samples of XLCOST's [XLCost-single-prompt test split](https://huggingface.co/datasets/giulio98/xlcost-single-prompt/viewer/Python/test) and comparing the outputs of the generated codes with respect to the expected output using pass@k metric.
80
 
81
+ | Metric | codegen-350M-multi-xlcost |
82
+ |--------|-----|
83
  |pass@1 | 3.70% |
84
  |pass@10 | 14.5% |
85