Update README.md
Browse files
README.md
CHANGED
@@ -1,123 +1,123 @@
|
|
1 |
-
---
|
2 |
-
language: sk
|
3 |
-
tags:
|
4 |
-
- SlovakBERT
|
5 |
-
license: mit
|
6 |
-
datasets:
|
7 |
-
- wikipedia
|
8 |
-
- opensubtitles
|
9 |
-
- oscar
|
10 |
-
- gerulatawebcrawl
|
11 |
-
- gerulatamonitoring
|
12 |
-
- blbec.online
|
13 |
-
---
|
14 |
-
|
15 |
-
# SlovakBERT (base-sized model)
|
16 |
-
SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.
|
17 |
-
|
18 |
-
## Intended uses & limitations
|
19 |
-
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
20 |
-
**IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks).
|
21 |
-
|
22 |
-
### How to use
|
23 |
-
You can use this model directly with a pipeline for masked language modeling:
|
24 |
-
|
25 |
-
```python
|
26 |
-
from transformers import pipeline
|
27 |
-
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
28 |
-
unmasker("Deti sa <mask> na ihrisku.")
|
29 |
-
|
30 |
-
[{'sequence': 'Deti sa hrali na ihrisku.',
|
31 |
-
'score': 0.6355380415916443,
|
32 |
-
'token': 5949,
|
33 |
-
'token_str': ' hrali'},
|
34 |
-
{'sequence': 'Deti sa hrajú na ihrisku.',
|
35 |
-
'score': 0.14731724560260773,
|
36 |
-
'token': 9081,
|
37 |
-
'token_str': ' hrajú'},
|
38 |
-
{'sequence': 'Deti sa zahrali na ihrisku.',
|
39 |
-
'score': 0.05016357824206352,
|
40 |
-
'token': 32553,
|
41 |
-
'token_str': ' zahrali'},
|
42 |
-
{'sequence': 'Deti sa stretli na ihrisku.',
|
43 |
-
'score': 0.041727423667907715,
|
44 |
-
'token': 5964,
|
45 |
-
'token_str': ' stretli'},
|
46 |
-
{'sequence': 'Deti sa učia na ihrisku.',
|
47 |
-
'score': 0.01886524073779583,
|
48 |
-
'token': 18099,
|
49 |
-
'token_str': ' učia'}]
|
50 |
-
```
|
51 |
-
|
52 |
-
Here is how to use this model to get the features of a given text in PyTorch:
|
53 |
-
```python
|
54 |
-
from transformers import RobertaTokenizer, RobertaModel
|
55 |
-
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
56 |
-
model = RobertaModel.from_pretrained('gerulata/slovakbert')
|
57 |
-
text = "Text ktorý sa má embedovať."
|
58 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
59 |
-
output = model(**encoded_input)
|
60 |
-
```
|
61 |
-
and in TensorFlow:
|
62 |
-
```python
|
63 |
-
from transformers import RobertaTokenizer, TFRobertaModel
|
64 |
-
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
65 |
-
model = TFRobertaModel.from_pretrained('gerulata/slovakbert')
|
66 |
-
text = "Text ktorý sa má embedovať."
|
67 |
-
encoded_input = tokenizer(text, return_tensors='tf')
|
68 |
-
output = model(encoded_input)
|
69 |
-
```
|
70 |
-
Or extract information from the model like this:
|
71 |
-
```python
|
72 |
-
from transformers import pipeline
|
73 |
-
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
74 |
-
unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.")
|
75 |
-
|
76 |
-
[{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.',
|
77 |
-
'score': 0.7383289933204651,
|
78 |
-
'token': 16621,
|
79 |
-
'token_str': ' 1944'},...]
|
80 |
-
```
|
81 |
-
|
82 |
-
# Training data
|
83 |
-
The SlovakBERT model was pretrained on these datasets:
|
84 |
-
|
85 |
-
- Wikipedia (326MB of text),
|
86 |
-
- OpenSubtitles (415MB of text),
|
87 |
-
- Oscar (4.6GB of text),
|
88 |
-
- Gerulata WebCrawl (12.7GB of text) ,
|
89 |
-
- Gerulata Monitoring (214 MB of text),
|
90 |
-
- blbec.online (4.5GB of text)
|
91 |
-
|
92 |
-
The text was then processed with the following steps:
|
93 |
-
- URL and email addresses were replaced with special tokens ("url", "email").
|
94 |
-
- Elongated interpunction was reduced (e.g. -- to -).
|
95 |
-
- Markdown syntax was deleted.
|
96 |
-
- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.
|
97 |
-
|
98 |
-
We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.
|
99 |
-
|
100 |
-
# Pretraining
|
101 |
-
The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.
|
102 |
-
|
103 |
-
## About us
|
104 |
-
<a href="https://www.gerulata.com/">
|
105 |
-
<img width="300px" src="https://www.gerulata.com/images/
|
106 |
-
</a>
|
107 |
-
|
108 |
-
Gerulata uses near real-time monitoring, advanced analytics and machine learning to help create a safer, more productive and enjoyable online environment for everyone.
|
109 |
-
|
110 |
-
### BibTeX entry and citation info
|
111 |
-
If you find our resource or paper is useful, please consider including the following citation in your paper.
|
112 |
-
- https://arxiv.org/abs/2109.15254
|
113 |
-
|
114 |
-
```
|
115 |
-
@misc{pikuliak2021slovakbert,
|
116 |
-
title={SlovakBERT: Slovak Masked Language Model},
|
117 |
-
author={Matúš Pikuliak and Štefan Grivalský and Martin Konôpka and Miroslav Blšták and Martin Tamajka and Viktor Bachratý and Marián Šimko and Pavol Balážik and Michal Trnka and Filip Uhlárik},
|
118 |
-
year={2021},
|
119 |
-
eprint={2109.15254},
|
120 |
-
archivePrefix={arXiv},
|
121 |
-
primaryClass={cs.CL}
|
122 |
-
}
|
123 |
```
|
|
|
1 |
+
---
|
2 |
+
language: sk
|
3 |
+
tags:
|
4 |
+
- SlovakBERT
|
5 |
+
license: mit
|
6 |
+
datasets:
|
7 |
+
- wikipedia
|
8 |
+
- opensubtitles
|
9 |
+
- oscar
|
10 |
+
- gerulatawebcrawl
|
11 |
+
- gerulatamonitoring
|
12 |
+
- blbec.online
|
13 |
+
---
|
14 |
+
|
15 |
+
# SlovakBERT (base-sized model)
|
16 |
+
SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko.
|
17 |
+
|
18 |
+
## Intended uses & limitations
|
19 |
+
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
|
20 |
+
**IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks).
|
21 |
+
|
22 |
+
### How to use
|
23 |
+
You can use this model directly with a pipeline for masked language modeling:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import pipeline
|
27 |
+
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
28 |
+
unmasker("Deti sa <mask> na ihrisku.")
|
29 |
+
|
30 |
+
[{'sequence': 'Deti sa hrali na ihrisku.',
|
31 |
+
'score': 0.6355380415916443,
|
32 |
+
'token': 5949,
|
33 |
+
'token_str': ' hrali'},
|
34 |
+
{'sequence': 'Deti sa hrajú na ihrisku.',
|
35 |
+
'score': 0.14731724560260773,
|
36 |
+
'token': 9081,
|
37 |
+
'token_str': ' hrajú'},
|
38 |
+
{'sequence': 'Deti sa zahrali na ihrisku.',
|
39 |
+
'score': 0.05016357824206352,
|
40 |
+
'token': 32553,
|
41 |
+
'token_str': ' zahrali'},
|
42 |
+
{'sequence': 'Deti sa stretli na ihrisku.',
|
43 |
+
'score': 0.041727423667907715,
|
44 |
+
'token': 5964,
|
45 |
+
'token_str': ' stretli'},
|
46 |
+
{'sequence': 'Deti sa učia na ihrisku.',
|
47 |
+
'score': 0.01886524073779583,
|
48 |
+
'token': 18099,
|
49 |
+
'token_str': ' učia'}]
|
50 |
+
```
|
51 |
+
|
52 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
53 |
+
```python
|
54 |
+
from transformers import RobertaTokenizer, RobertaModel
|
55 |
+
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
56 |
+
model = RobertaModel.from_pretrained('gerulata/slovakbert')
|
57 |
+
text = "Text ktorý sa má embedovať."
|
58 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
59 |
+
output = model(**encoded_input)
|
60 |
+
```
|
61 |
+
and in TensorFlow:
|
62 |
+
```python
|
63 |
+
from transformers import RobertaTokenizer, TFRobertaModel
|
64 |
+
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert')
|
65 |
+
model = TFRobertaModel.from_pretrained('gerulata/slovakbert')
|
66 |
+
text = "Text ktorý sa má embedovať."
|
67 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
68 |
+
output = model(encoded_input)
|
69 |
+
```
|
70 |
+
Or extract information from the model like this:
|
71 |
+
```python
|
72 |
+
from transformers import pipeline
|
73 |
+
unmasker = pipeline('fill-mask', model='gerulata/slovakbert')
|
74 |
+
unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.")
|
75 |
+
|
76 |
+
[{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.',
|
77 |
+
'score': 0.7383289933204651,
|
78 |
+
'token': 16621,
|
79 |
+
'token_str': ' 1944'},...]
|
80 |
+
```
|
81 |
+
|
82 |
+
# Training data
|
83 |
+
The SlovakBERT model was pretrained on these datasets:
|
84 |
+
|
85 |
+
- Wikipedia (326MB of text),
|
86 |
+
- OpenSubtitles (415MB of text),
|
87 |
+
- Oscar (4.6GB of text),
|
88 |
+
- Gerulata WebCrawl (12.7GB of text) ,
|
89 |
+
- Gerulata Monitoring (214 MB of text),
|
90 |
+
- blbec.online (4.5GB of text)
|
91 |
+
|
92 |
+
The text was then processed with the following steps:
|
93 |
+
- URL and email addresses were replaced with special tokens ("url", "email").
|
94 |
+
- Elongated interpunction was reduced (e.g. -- to -).
|
95 |
+
- Markdown syntax was deleted.
|
96 |
+
- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text.
|
97 |
+
|
98 |
+
We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text.
|
99 |
+
|
100 |
+
# Pretraining
|
101 |
+
The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision.
|
102 |
+
|
103 |
+
## About us
|
104 |
+
<a href="https://www.gerulata.com/">
|
105 |
+
<img width="300px" src="https://www.gerulata.com/assets/images/Logo_Footer.svg">
|
106 |
+
</a>
|
107 |
+
|
108 |
+
Gerulata uses near real-time monitoring, advanced analytics and machine learning to help create a safer, more productive and enjoyable online environment for everyone.
|
109 |
+
|
110 |
+
### BibTeX entry and citation info
|
111 |
+
If you find our resource or paper is useful, please consider including the following citation in your paper.
|
112 |
+
- https://arxiv.org/abs/2109.15254
|
113 |
+
|
114 |
+
```
|
115 |
+
@misc{pikuliak2021slovakbert,
|
116 |
+
title={SlovakBERT: Slovak Masked Language Model},
|
117 |
+
author={Matúš Pikuliak and Štefan Grivalský and Martin Konôpka and Miroslav Blšták and Martin Tamajka and Viktor Bachratý and Marián Šimko and Pavol Balážik and Michal Trnka and Filip Uhlárik},
|
118 |
+
year={2021},
|
119 |
+
eprint={2109.15254},
|
120 |
+
archivePrefix={arXiv},
|
121 |
+
primaryClass={cs.CL}
|
122 |
+
}
|
123 |
```
|