File size: 2,384 Bytes
7f1d730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-original-10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9916476841305999
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-original-10
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0443
- Accuracy: 0.9916
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.6259 | 1.0 | 247 | 3.3200 | 0.3994 |
| 1.9734 | 2.0 | 494 | 0.5108 | 0.9370 |
| 0.6166 | 3.0 | 741 | 0.2288 | 0.9749 |
| 0.4348 | 4.0 | 988 | 0.1149 | 0.9858 |
| 0.2823 | 5.0 | 1235 | 0.0760 | 0.9899 |
| 0.2351 | 6.0 | 1482 | 0.0618 | 0.9906 |
| 0.1889 | 7.0 | 1729 | 0.0550 | 0.9894 |
| 0.1681 | 8.0 | 1976 | 0.0505 | 0.9901 |
| 0.144 | 9.0 | 2223 | 0.0446 | 0.9919 |
| 0.1248 | 10.0 | 2470 | 0.0443 | 0.9916 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 3.0.0
- Tokenizers 0.15.2
|