gbueno86 commited on
Commit
8b23016
1 Parent(s): 2bb655b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +169 -3
README.md CHANGED
@@ -1,3 +1,169 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: tongyi-qianwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - chat
10
+ ---
11
+
12
+ # Qwen2-72B-Instruct
13
+
14
+ ## Introduction
15
+
16
+ Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 72B Qwen2 model.
17
+
18
+ Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
19
+
20
+ Qwen2-72B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
21
+
22
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
23
+ <br>
24
+
25
+ ## Model Details
26
+ Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
27
+
28
+ ## Training details
29
+ We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
30
+
31
+
32
+ ## Requirements
33
+ The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
34
+ ```
35
+ KeyError: 'qwen2'
36
+ ```
37
+
38
+ ## Quickstart
39
+
40
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
41
+
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ device = "cuda" # the device to load the model onto
45
+
46
+ model = AutoModelForCausalLM.from_pretrained(
47
+ "Qwen/Qwen2-72B-Instruct",
48
+ torch_dtype="auto",
49
+ device_map="auto"
50
+ )
51
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct")
52
+
53
+ prompt = "Give me a short introduction to large language model."
54
+ messages = [
55
+ {"role": "system", "content": "You are a helpful assistant."},
56
+ {"role": "user", "content": prompt}
57
+ ]
58
+ text = tokenizer.apply_chat_template(
59
+ messages,
60
+ tokenize=False,
61
+ add_generation_prompt=True
62
+ )
63
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
64
+
65
+ generated_ids = model.generate(
66
+ model_inputs.input_ids,
67
+ max_new_tokens=512
68
+ )
69
+ generated_ids = [
70
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
71
+ ]
72
+
73
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
74
+ ```
75
+
76
+ ### Processing Long Texts
77
+
78
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
79
+
80
+ For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
81
+
82
+ 1. **Install vLLM**: You can install vLLM by running the following command.
83
+
84
+ ```bash
85
+ pip install "vllm>=0.4.3"
86
+ ```
87
+
88
+ Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
89
+
90
+ 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
91
+ ```json
92
+ {
93
+ "architectures": [
94
+ "Qwen2ForCausalLM"
95
+ ],
96
+ // ...
97
+ "vocab_size": 152064,
98
+
99
+ // adding the following snippets
100
+ "rope_scaling": {
101
+ "factor": 4.0,
102
+ "original_max_position_embeddings": 32768,
103
+ "type": "yarn"
104
+ }
105
+ }
106
+ ```
107
+ This snippet enable YARN to support longer contexts.
108
+
109
+ 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
110
+
111
+ ```bash
112
+ python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-72B-Instruct --model path/to/weights
113
+ ```
114
+
115
+ Then you can access the Chat API by:
116
+
117
+ ```bash
118
+ curl http://localhost:8000/v1/chat/completions \
119
+ -H "Content-Type: application/json" \
120
+ -d '{
121
+ "model": "Qwen2-72B-Instruct",
122
+ "messages": [
123
+ {"role": "system", "content": "You are a helpful assistant."},
124
+ {"role": "user", "content": "Your Long Input Here."}
125
+ ]
126
+ }'
127
+ ```
128
+
129
+ For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
130
+
131
+ **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
132
+
133
+ ## Evaluation
134
+
135
+ We briefly compare Qwen2-72B-Instruct with similar-sized instruction-tuned LLMs, including our previous Qwen1.5-72B-Chat. The results are shown as follows:
136
+
137
+ | Datasets | Llama-3-70B-Instruct | Qwen1.5-72B-Chat | **Qwen2-72B-Instruct** |
138
+ | :--- | :---: | :---: | :---: |
139
+ | _**English**_ | | | |
140
+ | MMLU | 82.0 | 75.6 | **82.3** |
141
+ | MMLU-Pro | 56.2 | 51.7 | **64.4** |
142
+ | GPQA | 41.9 | 39.4 | **42.4** |
143
+ | TheroemQA | 42.5 | 28.8 | **44.4** |
144
+ | MT-Bench | 8.95 | 8.61 | **9.12** |
145
+ | Arena-Hard | 41.1 | 36.1 | **48.1** |
146
+ | IFEval (Prompt Strict-Acc.) | 77.3 | 55.8 | **77.6** |
147
+ | _**Coding**_ | | | |
148
+ | HumanEval | 81.7 | 71.3 | **86.0** |
149
+ | MBPP | **82.3** | 71.9 | 80.2 |
150
+ | MultiPL-E | 63.4 | 48.1 | **69.2** |
151
+ | EvalPlus | 75.2 | 66.9 | **79.0** |
152
+ | LiveCodeBench | 29.3 | 17.9 | **35.7** |
153
+ | _**Mathematics**_ | | | |
154
+ | GSM8K | **93.0** | 82.7 | 91.1 |
155
+ | MATH | 50.4 | 42.5 | **59.7** |
156
+ | _**Chinese**_ | | | |
157
+ | C-Eval | 61.6 | 76.1 | **83.8** |
158
+ | AlignBench | 7.42 | 7.28 | **8.27** |
159
+
160
+ ## Citation
161
+
162
+ If you find our work helpful, feel free to give us a cite.
163
+
164
+ ```
165
+ @article{qwen2,
166
+ title={Qwen2 Technical Report},
167
+ year={2024}
168
+ }
169
+ ```