File size: 7,355 Bytes
fb61af4
78bc045
 
3198dc5
fb61af4
 
 
 
78bc045
 
 
 
 
3198dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb61af4
78bc045
 
 
 
 
 
8769da1
78bc045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb61af4
78bc045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c508ecf
78bc045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1529f6
3198dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
language:
- en
license: llama3.1
library_name: transformers
tags:
- mergekit
- merge
base_model:
- meta-llama/Meta-Llama-3.1-70B-Instruct
- NousResearch/Hermes-3-Llama-3.1-70B
- abacusai/Dracarys-Llama-3.1-70B-Instruct
- VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct
model-index:
- name: Brinebreath-Llama-3.1-70B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 55.33
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 55.46
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 29.98
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.86
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.62
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gbueno86/Brinebreath-Llama-3.1-70B
      name: Open LLM Leaderboard
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/yDDOz1fsWfSviCGtCh3f3.png)
**Brinebreath-Llama-3.1-70B**
=====================================

I made this since I started having some problems with Cathallama. This seems to behave well during some days testing.

**Notable Performance**

* 7% overall success rate increase on MMLU-PRO over LLaMA 3.1 70b at Q4_0
* Strong performance in MMLU-PRO categories overall
* Great performance during manual testing

**Creation workflow**
=====================
**Models merged**
* meta-llama/Meta-Llama-3.1-70B-Instruct
* NousResearch/Hermes-3-Llama-3.1-70B
* abacusai/Dracarys-Llama-3.1-70B-Instruct
* VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct

```
flowchart TD
    A[Hermes 3] -->|Merge with| B[Meta-Llama-3.1]
    C[Dracarys] -->|Merge with| D[Meta-Llama-3.1]
    B -->| | E[Merge]
    D -->| | E[Merge]
    G[SauerkrautLM] -->|Merge with| E[Merge]
    E[Merge] -->| | F[Brinebreath]
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/3cjOUfghMD2GvxL7a3SOh.png)

**Testing**
=====================

**Hyperparameters**
---------------

* **Temperature**: 0.0 for automated, 0.9 for manual
* **Penalize repeat sequence**: 1.05
* **Consider N tokens for penalize**: 256
* **Penalize repetition of newlines**
* **Top-K sampling**: 40
* **Top-P sampling**: 0.95
* **Min-P sampling**: 0.05

**LLaMAcpp Version**
------------------

* b3600-1-g2339a0be
* -fa -ngl -1 -ctk f16 --no-mmap

**Tested Files**
------------------

* Brinebreath-Llama-3.1-70B.Q4_0.gguf
* Meta-Llama-3.1-70B-Instruct.Q4_0.gguf


**Manual testing**

| Category | Test Case | Brinebreath-Llama-3.1-70B.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf |
| --- | --- | --- | --- |
| **Common Sense** | Ball on cup | OK | OK | 
|  | Big duck small horse | OK | OK |
|  | Killers | OK | OK |
|  | Strawberry r's | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | 9.11 or 9.9 bigger | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | Dragon or lens | <span style="color: red;">KO</span> | <span style="color: red;">KO</span> |
|  | Shirts | OK | <span style="color: red;">KO</span> |
|  | Sisters | OK | <span style="color: red;">KO</span> |
|  | Jane faster | OK | OK |
| **Programming** | JSON | OK | OK |
|  | Python snake game | OK | <span style="color: red;">KO</span> |
| **Math** | Door window combination | OK | <span style="color: red;">KO</span> |
| **Smoke** | Poem |  OK | OK |
|  | Story |  OK | OK |

*Note: See [sample_generations.txt](https://huggingface.co/gbueno86/Brinebreath-Llama-3.1-70B/blob/main/sample_generations.txt) on the main folder of the repo for the raw generations.*

**MMLU-PRO**

| Model | Success % |
| --- | --- |
| Brinebreath-3.1-70B.Q4_0.gguf | **49.0%** |
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 42.0% |


| MMLU-PRO category| Brinebreath-3.1-70B.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf |
| --- | --- | --- |
| Business | **45.0%** | 40.0% |
| Law | **40.0%** | 35.0% |
| Psychology | **85.0%** | 80.0% |
| Biology | **80.0%** | 75.0% |
| Chemistry | **50.0%** | 45.0% |
| History | **65.0%** | 60.0% |
| Other | **55.0%** | 50.0% |
| Health | **70.0%** | 65.0% |
| Economics | **80.0%** | 75.0% |
| Math | **35.0%** | 30.0% |
| Physics | **45.0%** | 40.0% |
| Computer Science | **60.0%** | 55.0% |
| Philosophy | **50.0%** | 45.0% |
| Engineering | **45.0%** | 40.0% |

Note: MMLU-PRO Overall tested with 100 questions. Categories testes with 20 questions from each category.

**PubmedQA**

 Model Name | Success% |
| --- | --- |
| Brinebreath-3.1-70B.Q4_0.gguf| **71.00%** |
| Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 68.00% |


Note: PubmedQA tested with 100 questions.


**Request**
--------------
If you are hiring in the EU or can sponsor a visa, PM me :D

PS. Thank you mradermacher for the GGUFs!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gbueno86__Brinebreath-Llama-3.1-70B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |36.29|
|IFEval (0-Shot)    |55.33|
|BBH (3-Shot)       |55.46|
|MATH Lvl 5 (4-Shot)|29.98|
|GPQA (0-shot)      |12.86|
|MuSR (0-shot)      |17.49|
|MMLU-PRO (5-shot)  |46.62|