File size: 2,500 Bytes
1cd19d5
761ac41
 
 
 
4d109b3
761ac41
 
 
 
 
1cd19d5
761ac41
4d109b3
 
c4ec16a
761ac41
 
 
4d109b3
 
761ac41
4d109b3
c4ec16a
761ac41
 
 
c4ec16a
4d109b3
761ac41
 
 
 
 
 
 
 
 
 
4d109b3
761ac41
 
 
4d109b3
761ac41
c4ec16a
761ac41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
language:
- en
tags:
- llama
license: other
metrics:
- MMLU
- ARC 
- HellaSwag
- TruthfulQA
---

# 🥳 Platypus-30B has arrived! 

Platypus-30B is an instruction fine-tuned model based on the LLaMA-30B transformer architecture and takes advantage of [LoRA]([LoRA](https://arxiv.org/pdf/2106.09685.pdf).

| Metric                | Value |
|-----------------------|-------|
| MMLU (5-shot)         | 65.4  |
| ARC (25-shot)         | 64.6  |
| HellaSwag (10-shot)   | 84.3  |
| TruthfulQA (0-shot)   | 45.8  |
| Avg.                  | 65    | 

## Model Details

* **Trained by**: Cole Hunter & Ariel Lee
* **Model type:**  **Platypus-30B** is an auto-regressive language model based on the LLaMA transformer architecture.
* **Language(s)**: English
* **License for base weights**: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).

| Hyperparameter            | Value |
|---------------------------|-------|
| \\(n_\text{parameters}\\) | 33B   |
| \\(d_\text{model}\\)      | 6656  |
| \\(n_\text{layers}\\)     | 60    |
| \\(n_\text{heads}\\)      | 52    |

## Training Dataset

Dataset of highly filtered and curated question and answer pairs. Release TBD.

## Training Procedure

`lilloukas/Platypus-30B` was instruction fine-tuned using LoRA on 4 A100 80GB. For training details and inference instructions please see the [Platypus-30B](https://github.com/arielnlee/Platypus-30B.git) GitHub repo.

## Limitations and bias

The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA [paper](https://arxiv.org/abs/2302.13971). We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.

## Citations

```bibtex
@article{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
```