File size: 7,562 Bytes
1cd19d5
761ac41
 
dd87b86
761ac41
 
 
 
dd87b86
761ac41
 
dd87b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd19d5
761ac41
4d109b3
 
3e7d1d0
761ac41
 
 
feb7b4c
4d109b3
761ac41
 
 
 
 
 
 
 
 
 
4d109b3
761ac41
 
 
4d109b3
761ac41
72bdc6f
761ac41
5fdf80b
0e1a3ca
5fdf80b
 
 
 
 
f88dd6a
 
0e1a3ca
f88dd6a
c5d2105
f88dd6a
 
0e1a3ca
f88dd6a
c5d2105
f88dd6a
 
0e1a3ca
f88dd6a
c5d2105
f88dd6a
 
0e1a3ca
5fdf80b
c5d2105
5fdf80b
761ac41
 
f8ae334
761ac41
 
 
 
 
 
 
 
 
 
3e7d1d0
 
 
 
 
 
f8ae334
87cdf68
 
 
 
 
 
 
 
 
 
 
 
 
 
dd87b86
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
language:
- en
license: other
tags:
- llama
metrics:
- MMLU
- ARC
- HellaSwag
- TruthfulQA
model-index:
- name: Platypus-30B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 64.59
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 45.35
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 14.4
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lilloukas/Platypus-30B
      name: Open LLM Leaderboard
---

# 🥳 Platypus-30B has arrived! 

Platypus-30B is an instruction fine-tuned model based on the LLaMA-30B transformer architecture.

## Model Details

* **Trained by**: Cole Hunter & Ariel Lee
* **Model type:**  **Platypus-30B** is an auto-regressive language model based on the LLaMA transformer architecture.
* **Language(s)**: English
* **License for base weights**: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md).

| Hyperparameter            | Value |
|---------------------------|-------|
| \\(n_\text{parameters}\\) | 33B   |
| \\(d_\text{model}\\)      | 6656  |
| \\(n_\text{layers}\\)     | 60    |
| \\(n_\text{heads}\\)      | 52    |

## Training Dataset

Dataset of highly filtered and curated question and answer pairs. Release TBD.

## Training Procedure

`garage-bAInd/Platypus-30B` was instruction fine-tuned using LoRA on 4 A100 80GB. For training details and inference instructions please see the [Platypus-30B](https://github.com/arielnlee/Platypus-30B.git) GitHub repo.

## Reproducing Evaluation Results
Install LM Evaluation Harness:
```
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
```
Each task was evaluated on a single A100 80GB GPU.

ARC:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/Platypus-30B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/arc_challenge_25shot.json --device cuda --num_fewshot 25
```

HellaSwag:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/Platypus-30B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/hellaswag_10shot.json --device cuda --num_fewshot 10
```

MMLU:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/Platypus-30B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/mmlu_5shot.json --device cuda --num_fewshot 5
```

TruthfulQA:
```
python main.py --model hf-causal-experimental --model_args pretrained=garage-bAIdnd/Platypus-30B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/Platypus-30B/truthfulqa_0shot.json --device cuda
```
## Limitations and bias

The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA paper. We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly.

## Citations

```bibtex
@article{touvron2023llama,
  title={LLaMA: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}

@article{hu2021lora,
  title={LoRA: Low-Rank Adaptation of Large Language Models},
  author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
  journal={CoRR},
  year={2021}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lilloukas__Platypus-30B)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 57.12   |
| ARC (25-shot)         | 64.59          |
| HellaSwag (10-shot)   | 84.24    |
| MMLU (5-shot)         | 64.19         |
| TruthfulQA (0-shot)   | 45.35   |
| Winogrande (5-shot)   | 81.37   |
| GSM8K (5-shot)        | 14.4        |
| DROP (3-shot)         | 45.65         |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lilloukas__Platypus-30B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |59.03|
|AI2 Reasoning Challenge (25-Shot)|64.59|
|HellaSwag (10-Shot)              |84.24|
|MMLU (5-Shot)                    |64.19|
|TruthfulQA (0-shot)              |45.35|
|Winogrande (5-shot)              |81.37|
|GSM8k (5-shot)                   |14.40|