ganser4566
commited on
Commit
•
3638607
1
Parent(s):
022c1b3
Upload 10 files
Browse files- README.md +158 -0
- config.json +25 -0
- configuration_stablelm.py +183 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- modeling_stablelm.py +1341 -0
- special_tokens_map.json +40 -0
- tokenizer.json +0 -0
- tokenizer_config.json +46 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- HuggingFaceH4/ultrachat_200k
|
4 |
+
- allenai/ultrafeedback_binarized_cleaned
|
5 |
+
- meta-math/MetaMathQA
|
6 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
7 |
+
- openchat/openchat_sharegpt4_dataset
|
8 |
+
- LDJnr/Capybara
|
9 |
+
- Intel/orca_dpo_pairs
|
10 |
+
- hkust-nlp/deita-10k-v0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
tags:
|
14 |
+
- causal-lm
|
15 |
+
extra_gated_fields:
|
16 |
+
Name: text
|
17 |
+
Email: text
|
18 |
+
Country: text
|
19 |
+
Organization or Affiliation: text
|
20 |
+
I ALLOW Stability AI to email me about new model releases: checkbox
|
21 |
+
license: other
|
22 |
+
---
|
23 |
+
# `StableLM 2 Zephyr 1.6B`
|
24 |
+
|
25 |
+
## Model Description
|
26 |
+
|
27 |
+
`Stable LM 2 Zephyr 1.6B` is a 1.6 billion parameter instruction tuned language model inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline. The model is trained on a mix of publicly available datasets and synthetic datasets, utilizing [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290).
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
`StableLM 2 Zephyr 1.6B` uses the following instruction format:
|
32 |
+
```
|
33 |
+
<|user|>
|
34 |
+
Which famous math number begins with 1.6 ...?<|endoftext|>
|
35 |
+
<|assistant|>
|
36 |
+
The number you are referring to is 1.618033988749895. This is the famous value known as the golden ratio<|endoftext|>
|
37 |
+
```
|
38 |
+
|
39 |
+
This format is also available through the tokenizer's `apply_chat_template` method:
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-zephyr-1_6b')
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
'stabilityai/stablelm-2-zephyr-1_6b',
|
47 |
+
device_map="auto"
|
48 |
+
)
|
49 |
+
|
50 |
+
prompt = [{'role': 'user', 'content': 'Which famous math number begins with 1.6 ...?'}]
|
51 |
+
inputs = tokenizer.apply_chat_template(
|
52 |
+
prompt,
|
53 |
+
add_generation_prompt=True,
|
54 |
+
return_tensors='pt'
|
55 |
+
)
|
56 |
+
|
57 |
+
tokens = model.generate(
|
58 |
+
inputs.to(model.device),
|
59 |
+
max_new_tokens=1024,
|
60 |
+
temperature=0.5,
|
61 |
+
do_sample=True
|
62 |
+
)
|
63 |
+
|
64 |
+
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
|
65 |
+
```
|
66 |
+
|
67 |
+
## Model Details
|
68 |
+
|
69 |
+
* **Developed by**: [Stability AI](https://stability.ai/)
|
70 |
+
* **Model type**: `StableLM 2 Zephyr 1.6B` model is an auto-regressive language model based on the transformer decoder architecture.
|
71 |
+
* **Language(s)**: English
|
72 |
+
* **Paper**: [Stable LM 2 1.6B Technical Report](https://drive.google.com/file/d/1JYJHszhS8EFChTbNAf8xmqhKjogWRrQF/view?usp=sharing)
|
73 |
+
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
|
74 |
+
* **Finetuned from model**: [https://huggingface.co/stabilityai/stablelm-2-1_6b](https://huggingface.co/stabilityai/stablelm-2-1_6b)
|
75 |
+
* **License**: [StabilityAI Non-Commercial Research Community License](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b/blob/main/LICENSE). If you want to use this model for your commercial products or purposes, please contact us [here](https://stability.ai/contact) to learn more.
|
76 |
+
* **Contact**: For questions and comments about the model, please email `[email protected]`
|
77 |
+
|
78 |
+
### Training Dataset
|
79 |
+
|
80 |
+
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
|
81 |
+
1. SFT Datasets
|
82 |
+
- HuggingFaceH4/ultrachat_200k
|
83 |
+
- meta-math/MetaMathQA
|
84 |
+
- WizardLM/WizardLM_evol_instruct_V2_196k
|
85 |
+
- Open-Orca/SlimOrca
|
86 |
+
- openchat/openchat_sharegpt4_dataset
|
87 |
+
- LDJnr/Capybara
|
88 |
+
- hkust-nlp/deita-10k-v0
|
89 |
+
|
90 |
+
2. Preference Datasets:
|
91 |
+
- allenai/ultrafeedback_binarized_cleaned
|
92 |
+
- Intel/orca_dpo_pairs
|
93 |
+
|
94 |
+
## Performance
|
95 |
+
|
96 |
+
### MT-Bench
|
97 |
+
|
98 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/61b2bf4f5b1f7cad1799cfbb/QH00HVM3lg-5f17U_py4K.png" alt="mt_bench_plot" width="600"/>
|
99 |
+
|
100 |
+
| Model | Size | MT-Bench |
|
101 |
+
|-------------------------|------|----------|
|
102 |
+
| Mistral-7B-Instruct-v0.2| 7B | 7.61 |
|
103 |
+
| Llama2-Chat | 70B | 6.86 |
|
104 |
+
| stablelm-zephyr-3b | 3B | 6.64 |
|
105 |
+
| MPT-30B-Chat | 30B | 6.39 |
|
106 |
+
| **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
|
107 |
+
| Falcon-40B-Instruct | 40B | 5.17 |
|
108 |
+
| Qwen-1.8B-Chat | 1.8B | 4.95 |
|
109 |
+
| dolphin-2.6-phi-2 | 2.7B | 4.93 |
|
110 |
+
| phi-2 | 2.7B | 4.29 |
|
111 |
+
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
|
112 |
+
|
113 |
+
### OpenLLM Leaderboard
|
114 |
+
|
115 |
+
| Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|
116 |
+
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
|
117 |
+
| microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
|
118 |
+
| **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.89% | 43.69% | 69.34% | 41.85% | 45.21% | 64.09% | 35.18% |
|
119 |
+
| microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
|
120 |
+
| stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
|
121 |
+
| mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
|
122 |
+
| KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
|
123 |
+
| openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
|
124 |
+
| iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
|
125 |
+
| TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
### Training Infrastructure
|
130 |
+
|
131 |
+
* **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
|
132 |
+
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
|
133 |
+
|
134 |
+
## Use and Limitations
|
135 |
+
|
136 |
+
### Intended Use
|
137 |
+
|
138 |
+
The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about [safety and limitations](#limitations-and-bias) below.
|
139 |
+
|
140 |
+
### Limitations and Bias
|
141 |
+
|
142 |
+
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
|
143 |
+
|
144 |
+
Through our internal red teaming, we discovered that while the model will not output harmful information if not prompted to do so, it will hallucinate many facts. It is also willing to output potentially harmful outputs or misinformation when the user requests it.
|
145 |
+
Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful.
|
146 |
+
Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model.
|
147 |
+
Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.
|
148 |
+
|
149 |
+
|
150 |
+
## How to Cite
|
151 |
+
|
152 |
+
```bibtex
|
153 |
+
@misc{StableLM-2-1.6B,
|
154 |
+
url={[https://huggingface.co/stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/stablelm-2-1.6b)},
|
155 |
+
title={Stable LM 2 1.6B},
|
156 |
+
author={Stability AI Language Team}
|
157 |
+
}
|
158 |
+
```
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"StableLmForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 100257,
|
6 |
+
"eos_token_id": 100257,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 2048,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 5632,
|
11 |
+
"max_position_embeddings": 4096,
|
12 |
+
"model_type": "stablelm",
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"partial_rotary_factor": 0.25,
|
18 |
+
"rope_theta": 10000,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.38.0",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_qkv_bias": true,
|
24 |
+
"vocab_size": 100352
|
25 |
+
}
|
configuration_stablelm.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" StableLM model configuration """
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json",
|
25 |
+
# See all StableLM models at https://huggingface.co/models?filter=stablelm
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class StableLmConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`~StableLmModel`].
|
32 |
+
It is used to instantiate an StableLM model according to the specified arguments, defining the model
|
33 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
34 |
+
the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
37 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
38 |
+
for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 50304):
|
43 |
+
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
44 |
+
can be represented by the `inputs_ids` passed when calling [`StableLmModel`].
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 6912):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string).
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model might ever be used with.
|
65 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
68 |
+
all weight matrices.
|
69 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
70 |
+
The epsilon used by the normalization layers.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether or not the model should return the last key/values attentions
|
73 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
74 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
75 |
+
Whether the model's input and output word embeddings should be tied.
|
76 |
+
rope_theta (`float`, *optional*, defaults to `10000.0`):
|
77 |
+
The base period of the RoPE embeddings.
|
78 |
+
rope_scaling (`Dict`, *optional*):
|
79 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
80 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
81 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
82 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
83 |
+
these scaling strategies behave:
|
84 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
85 |
+
is an experimental feature, subject to breaking API changes in future versions.
|
86 |
+
use_qkv_bias (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether or not the model should use bias for qkv layers.
|
88 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
89 |
+
The dropout ratio after applying the MLP to the hidden states.
|
90 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
91 |
+
The dropout ratio for the attention probabilities.
|
92 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.25):
|
93 |
+
Percentage of the query and keys which will have rotary embedding.
|
94 |
+
bos_token_id (int, *optional*, defaults to 0):
|
95 |
+
The id of the `BOS` token in the vocabulary.
|
96 |
+
eos_token_id (int, *optional*, defaults to 0):
|
97 |
+
The id of the `EOS` token in the vocabulary.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import StableLmModel, StableLmConfig
|
103 |
+
|
104 |
+
>>> # Initializing a StableLM stablelm-3b style configuration
|
105 |
+
>>> configuration = StableLmConfig()
|
106 |
+
```"""
|
107 |
+
|
108 |
+
model_type = "stablelm"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=50304,
|
114 |
+
intermediate_size=6912,
|
115 |
+
hidden_size=2560,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=32,
|
119 |
+
hidden_act="silu",
|
120 |
+
max_position_embeddings=4096,
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1.0e-5,
|
123 |
+
use_cache=True,
|
124 |
+
tie_word_embeddings=False,
|
125 |
+
rope_theta=10_000,
|
126 |
+
rope_scaling=None,
|
127 |
+
use_qkv_bias=False,
|
128 |
+
hidden_dropout=0.0,
|
129 |
+
attention_dropout=0.0,
|
130 |
+
partial_rotary_factor=0.25,
|
131 |
+
bos_token_id=0,
|
132 |
+
eos_token_id=0,
|
133 |
+
**kwargs,
|
134 |
+
):
|
135 |
+
self.vocab_size = vocab_size
|
136 |
+
self.max_position_embeddings = max_position_embeddings
|
137 |
+
|
138 |
+
self.hidden_size = hidden_size
|
139 |
+
self.intermediate_size = intermediate_size
|
140 |
+
self.num_hidden_layers = num_hidden_layers
|
141 |
+
self.num_attention_heads = num_attention_heads
|
142 |
+
self.num_key_value_heads = num_key_value_heads
|
143 |
+
self.hidden_act = hidden_act
|
144 |
+
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.layer_norm_eps = layer_norm_eps
|
147 |
+
self.use_cache = use_cache
|
148 |
+
self.rope_theta = rope_theta
|
149 |
+
self.rope_scaling = rope_scaling
|
150 |
+
self.use_qkv_bias = use_qkv_bias
|
151 |
+
self.hidden_dropout = hidden_dropout
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.partial_rotary_factor = partial_rotary_factor
|
154 |
+
self._rope_scaling_validation()
|
155 |
+
|
156 |
+
super().__init__(
|
157 |
+
bos_token_id=bos_token_id,
|
158 |
+
eos_token_id=eos_token_id,
|
159 |
+
tie_word_embeddings=tie_word_embeddings,
|
160 |
+
**kwargs,
|
161 |
+
)
|
162 |
+
|
163 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
164 |
+
def _rope_scaling_validation(self):
|
165 |
+
"""
|
166 |
+
Validate the `rope_scaling` configuration.
|
167 |
+
"""
|
168 |
+
if self.rope_scaling is None:
|
169 |
+
return
|
170 |
+
|
171 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
172 |
+
raise ValueError(
|
173 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
174 |
+
f"got {self.rope_scaling}"
|
175 |
+
)
|
176 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
177 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
178 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
179 |
+
raise ValueError(
|
180 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
181 |
+
)
|
182 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
183 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100257,
|
4 |
+
"eos_token_id": 100257,
|
5 |
+
"transformers_version": "4.38.0"
|
6 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_stablelm.py
ADDED
@@ -0,0 +1,1341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch StableLM model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.utils import (
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
logging,
|
41 |
+
replace_return_docstrings,
|
42 |
+
)
|
43 |
+
from .configuration_stablelm import StableLmConfig
|
44 |
+
|
45 |
+
|
46 |
+
if is_flash_attn_2_available():
|
47 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
48 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "StableLmConfig"
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
57 |
+
def _get_unpad_data(attention_mask):
|
58 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
59 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
60 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
61 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
62 |
+
return (
|
63 |
+
indices,
|
64 |
+
cu_seqlens,
|
65 |
+
max_seqlen_in_batch,
|
66 |
+
)
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->StableLm
|
70 |
+
class StableLmRotaryEmbedding(nn.Module):
|
71 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
72 |
+
super().__init__()
|
73 |
+
|
74 |
+
self.dim = dim
|
75 |
+
self.max_position_embeddings = max_position_embeddings
|
76 |
+
self.base = base
|
77 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
78 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
79 |
+
|
80 |
+
# Build here to make `torch.jit.trace` work.
|
81 |
+
self._set_cos_sin_cache(
|
82 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
83 |
+
)
|
84 |
+
|
85 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
86 |
+
self.max_seq_len_cached = seq_len
|
87 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
88 |
+
|
89 |
+
freqs = torch.outer(t, self.inv_freq)
|
90 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
91 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
92 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
93 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
94 |
+
|
95 |
+
def forward(self, x, seq_len=None):
|
96 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
97 |
+
if seq_len > self.max_seq_len_cached:
|
98 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
99 |
+
|
100 |
+
return (
|
101 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
102 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->StableLm
|
107 |
+
class StableLmLinearScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
108 |
+
"""StableLmRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
109 |
+
|
110 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
111 |
+
self.scaling_factor = scaling_factor
|
112 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
113 |
+
|
114 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
115 |
+
self.max_seq_len_cached = seq_len
|
116 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
117 |
+
t = t / self.scaling_factor
|
118 |
+
|
119 |
+
freqs = torch.outer(t, self.inv_freq)
|
120 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
121 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
122 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
123 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
124 |
+
|
125 |
+
|
126 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->StableLm
|
127 |
+
class StableLmDynamicNTKScalingRotaryEmbedding(StableLmRotaryEmbedding):
|
128 |
+
"""StableLmRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
129 |
+
|
130 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
131 |
+
self.scaling_factor = scaling_factor
|
132 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
133 |
+
|
134 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
135 |
+
self.max_seq_len_cached = seq_len
|
136 |
+
|
137 |
+
if seq_len > self.max_position_embeddings:
|
138 |
+
base = self.base * (
|
139 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
140 |
+
) ** (self.dim / (self.dim - 2))
|
141 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
142 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
143 |
+
|
144 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
145 |
+
|
146 |
+
freqs = torch.outer(t, self.inv_freq)
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
154 |
+
def rotate_half(x):
|
155 |
+
"""Rotates half the hidden dims of the input."""
|
156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
+
return torch.cat((-x2, x1), dim=-1)
|
159 |
+
|
160 |
+
|
161 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
q (`torch.Tensor`): The query tensor.
|
167 |
+
k (`torch.Tensor`): The key tensor.
|
168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
170 |
+
position_ids (`torch.Tensor`):
|
171 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
172 |
+
used to pass offsetted position ids when working with a KV-cache.
|
173 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
174 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
175 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
176 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
177 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
178 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
179 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
180 |
+
Returns:
|
181 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
182 |
+
"""
|
183 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
184 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
185 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
186 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
187 |
+
return q_embed, k_embed
|
188 |
+
|
189 |
+
|
190 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->StableLm
|
191 |
+
class StableLmMLP(nn.Module):
|
192 |
+
def __init__(self, config):
|
193 |
+
super().__init__()
|
194 |
+
self.config = config
|
195 |
+
self.hidden_size = config.hidden_size
|
196 |
+
self.intermediate_size = config.intermediate_size
|
197 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
198 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
199 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
200 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
204 |
+
|
205 |
+
|
206 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
207 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
208 |
+
"""
|
209 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
210 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
211 |
+
"""
|
212 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
213 |
+
if n_rep == 1:
|
214 |
+
return hidden_states
|
215 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
216 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
217 |
+
|
218 |
+
|
219 |
+
class StableLmAttention(nn.Module):
|
220 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
221 |
+
|
222 |
+
def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
self.layer_idx = layer_idx
|
226 |
+
if layer_idx is None:
|
227 |
+
logger.warning_once(
|
228 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
229 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
230 |
+
"when creating this class."
|
231 |
+
)
|
232 |
+
|
233 |
+
self.hidden_size = config.hidden_size
|
234 |
+
self.num_heads = config.num_attention_heads
|
235 |
+
self.head_dim = self.hidden_size // self.num_heads
|
236 |
+
self.num_key_value_heads = config.num_key_value_heads
|
237 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
238 |
+
self.max_position_embeddings = config.max_position_embeddings
|
239 |
+
self.rope_theta = config.rope_theta
|
240 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
241 |
+
self.is_causal = True
|
242 |
+
|
243 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
244 |
+
raise ValueError(
|
245 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
246 |
+
f" and `num_heads`: {self.num_heads})."
|
247 |
+
)
|
248 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias)
|
249 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
250 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias)
|
251 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
252 |
+
|
253 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
254 |
+
self._init_rope()
|
255 |
+
|
256 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonAttention._init_rope with Persimmon->StableLm
|
257 |
+
def _init_rope(self):
|
258 |
+
if self.config.rope_scaling is None:
|
259 |
+
self.rotary_emb = StableLmRotaryEmbedding(
|
260 |
+
int(self.partial_rotary_factor * self.head_dim),
|
261 |
+
max_position_embeddings=self.max_position_embeddings,
|
262 |
+
base=self.rope_theta,
|
263 |
+
)
|
264 |
+
else:
|
265 |
+
scaling_type = self.config.rope_scaling["type"]
|
266 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
267 |
+
if scaling_type == "linear":
|
268 |
+
self.rotary_emb = StableLmLinearScalingRotaryEmbedding(
|
269 |
+
int(self.partial_rotary_factor * self.head_dim),
|
270 |
+
max_position_embeddings=self.max_position_embeddings,
|
271 |
+
scaling_factor=scaling_factor,
|
272 |
+
base=self.rope_theta,
|
273 |
+
)
|
274 |
+
elif scaling_type == "dynamic":
|
275 |
+
self.rotary_emb = StableLmDynamicNTKScalingRotaryEmbedding(
|
276 |
+
int(self.partial_rotary_factor * self.head_dim),
|
277 |
+
max_position_embeddings=self.max_position_embeddings,
|
278 |
+
scaling_factor=scaling_factor,
|
279 |
+
base=self.rope_theta,
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
283 |
+
|
284 |
+
def forward(
|
285 |
+
self,
|
286 |
+
hidden_states: torch.Tensor,
|
287 |
+
attention_mask: Optional[torch.Tensor] = None,
|
288 |
+
position_ids: Optional[torch.LongTensor] = None,
|
289 |
+
past_key_value: Optional[Cache] = None,
|
290 |
+
output_attentions: bool = False,
|
291 |
+
use_cache: bool = False,
|
292 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
293 |
+
bsz, q_len, _ = hidden_states.size()
|
294 |
+
|
295 |
+
query_states = self.q_proj(hidden_states)
|
296 |
+
key_states = self.k_proj(hidden_states)
|
297 |
+
value_states = self.v_proj(hidden_states)
|
298 |
+
|
299 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
300 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
301 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
302 |
+
|
303 |
+
kv_seq_len = key_states.shape[-2]
|
304 |
+
if past_key_value is not None:
|
305 |
+
if self.layer_idx is None:
|
306 |
+
raise ValueError(
|
307 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
308 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
309 |
+
"with a layer index."
|
310 |
+
)
|
311 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
312 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
313 |
+
|
314 |
+
# Partial rotary embedding
|
315 |
+
query_rot, query_pass = (
|
316 |
+
query_states[..., : self.rotary_emb.dim],
|
317 |
+
query_states[..., self.rotary_emb.dim :],
|
318 |
+
)
|
319 |
+
key_rot, key_pass = (
|
320 |
+
key_states[..., : self.rotary_emb.dim],
|
321 |
+
key_states[..., self.rotary_emb.dim :],
|
322 |
+
)
|
323 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
324 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
325 |
+
|
326 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
327 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
328 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
329 |
+
|
330 |
+
if past_key_value is not None:
|
331 |
+
# Specific to RoPE models with partial rotation
|
332 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
333 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
334 |
+
|
335 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
336 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
337 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
338 |
+
|
339 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
340 |
+
|
341 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
342 |
+
raise ValueError(
|
343 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
344 |
+
f" {attn_weights.size()}"
|
345 |
+
)
|
346 |
+
|
347 |
+
if attention_mask is not None:
|
348 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
349 |
+
raise ValueError(
|
350 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
351 |
+
)
|
352 |
+
attn_weights = attn_weights + attention_mask
|
353 |
+
|
354 |
+
# upcast attention to fp32
|
355 |
+
attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype)
|
356 |
+
attn_weights = self.attention_dropout(attn_weights)
|
357 |
+
|
358 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
359 |
+
|
360 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
361 |
+
raise ValueError(
|
362 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
363 |
+
f" {attn_output.size()}"
|
364 |
+
)
|
365 |
+
|
366 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
367 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
368 |
+
|
369 |
+
attn_output = self.o_proj(attn_output)
|
370 |
+
|
371 |
+
if not output_attentions:
|
372 |
+
attn_weights = None
|
373 |
+
|
374 |
+
return attn_output, attn_weights, past_key_value
|
375 |
+
|
376 |
+
|
377 |
+
class StableLmSdpaAttention(StableLmAttention):
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
hidden_states: torch.Tensor,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
position_ids: Optional[torch.LongTensor] = None,
|
383 |
+
past_key_value: Optional[Cache] = None,
|
384 |
+
output_attentions: bool = False,
|
385 |
+
use_cache: bool = False,
|
386 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
387 |
+
if output_attentions:
|
388 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
389 |
+
logger.warning_once(
|
390 |
+
"StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
391 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
392 |
+
)
|
393 |
+
return super().forward(
|
394 |
+
hidden_states=hidden_states,
|
395 |
+
attention_mask=attention_mask,
|
396 |
+
position_ids=position_ids,
|
397 |
+
past_key_value=past_key_value,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
use_cache=use_cache,
|
400 |
+
)
|
401 |
+
|
402 |
+
bsz, q_len, _ = hidden_states.size()
|
403 |
+
|
404 |
+
query_states = self.q_proj(hidden_states)
|
405 |
+
key_states = self.k_proj(hidden_states)
|
406 |
+
value_states = self.v_proj(hidden_states)
|
407 |
+
|
408 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
409 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
410 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
411 |
+
|
412 |
+
kv_seq_len = key_states.shape[-2]
|
413 |
+
if past_key_value is not None:
|
414 |
+
if self.layer_idx is None:
|
415 |
+
raise ValueError(
|
416 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
417 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
418 |
+
"with a layer index."
|
419 |
+
)
|
420 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
421 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
422 |
+
|
423 |
+
# Partial rotary embedding
|
424 |
+
query_rot, query_pass = (
|
425 |
+
query_states[..., : self.rotary_emb.dim],
|
426 |
+
query_states[..., self.rotary_emb.dim :],
|
427 |
+
)
|
428 |
+
key_rot, key_pass = (
|
429 |
+
key_states[..., : self.rotary_emb.dim],
|
430 |
+
key_states[..., self.rotary_emb.dim :],
|
431 |
+
)
|
432 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
433 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
434 |
+
|
435 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
436 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
437 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
438 |
+
|
439 |
+
if past_key_value is not None:
|
440 |
+
# Specific to RoPE models with partial rotation
|
441 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
442 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
443 |
+
|
444 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
445 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
446 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
447 |
+
|
448 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
449 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
450 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
451 |
+
query_states = query_states.contiguous()
|
452 |
+
key_states = key_states.contiguous()
|
453 |
+
value_states = value_states.contiguous()
|
454 |
+
|
455 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
456 |
+
query_states,
|
457 |
+
key_states,
|
458 |
+
value_states,
|
459 |
+
attn_mask=attention_mask,
|
460 |
+
dropout_p=self.attention_dropout.p if self.training else 0.0,
|
461 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
462 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
463 |
+
)
|
464 |
+
|
465 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
466 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
467 |
+
|
468 |
+
attn_output = self.o_proj(attn_output)
|
469 |
+
|
470 |
+
return attn_output, None, past_key_value
|
471 |
+
|
472 |
+
|
473 |
+
class StableLmFlashAttention2(StableLmAttention):
|
474 |
+
"""
|
475 |
+
StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays
|
476 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
477 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
478 |
+
"""
|
479 |
+
|
480 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
481 |
+
def __init__(self, *args, **kwargs):
|
482 |
+
super().__init__(*args, **kwargs)
|
483 |
+
|
484 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
485 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
486 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
487 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
488 |
+
|
489 |
+
def forward(
|
490 |
+
self,
|
491 |
+
hidden_states: torch.Tensor,
|
492 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
493 |
+
position_ids: Optional[torch.LongTensor] = None,
|
494 |
+
past_key_value: Optional[Cache] = None,
|
495 |
+
output_attentions: bool = False,
|
496 |
+
use_cache: bool = False,
|
497 |
+
**kwargs,
|
498 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
499 |
+
# StableLmFlashAttention2 attention does not support output_attentions
|
500 |
+
|
501 |
+
output_attentions = False
|
502 |
+
|
503 |
+
bsz, q_len, _ = hidden_states.size()
|
504 |
+
|
505 |
+
query_states = self.q_proj(hidden_states)
|
506 |
+
key_states = self.k_proj(hidden_states)
|
507 |
+
value_states = self.v_proj(hidden_states)
|
508 |
+
|
509 |
+
# Flash attention requires the input to have the shape
|
510 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
511 |
+
# therefore we just need to keep the original shape
|
512 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
513 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
514 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
515 |
+
|
516 |
+
kv_seq_len = key_states.shape[-2]
|
517 |
+
if past_key_value is not None:
|
518 |
+
if self.layer_idx is None:
|
519 |
+
raise ValueError(
|
520 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
521 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
522 |
+
"with a layer index."
|
523 |
+
)
|
524 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
525 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
526 |
+
|
527 |
+
# Partial rotary embedding
|
528 |
+
query_rot, query_pass = (
|
529 |
+
query_states[..., : self.rotary_emb.dim],
|
530 |
+
query_states[..., self.rotary_emb.dim :],
|
531 |
+
)
|
532 |
+
key_rot, key_pass = (
|
533 |
+
key_states[..., : self.rotary_emb.dim],
|
534 |
+
key_states[..., self.rotary_emb.dim :],
|
535 |
+
)
|
536 |
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
537 |
+
|
538 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
539 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
540 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
541 |
+
|
542 |
+
if past_key_value is not None:
|
543 |
+
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim}
|
544 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
545 |
+
|
546 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
547 |
+
# to be able to avoid many of these transpose/reshape/view.
|
548 |
+
query_states = query_states.transpose(1, 2)
|
549 |
+
key_states = key_states.transpose(1, 2)
|
550 |
+
value_states = value_states.transpose(1, 2)
|
551 |
+
|
552 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
553 |
+
|
554 |
+
attn_output = self._flash_attention_forward(
|
555 |
+
query_states,
|
556 |
+
key_states,
|
557 |
+
value_states,
|
558 |
+
attention_mask,
|
559 |
+
q_len,
|
560 |
+
dropout=dropout_rate,
|
561 |
+
)
|
562 |
+
|
563 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
564 |
+
attn_output = self.o_proj(attn_output)
|
565 |
+
|
566 |
+
if not output_attentions:
|
567 |
+
attn_weights = None
|
568 |
+
|
569 |
+
return attn_output, attn_weights, past_key_value
|
570 |
+
|
571 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
572 |
+
def _flash_attention_forward(
|
573 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
574 |
+
):
|
575 |
+
"""
|
576 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
577 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
578 |
+
|
579 |
+
Args:
|
580 |
+
query_states (`torch.Tensor`):
|
581 |
+
Input query states to be passed to Flash Attention API
|
582 |
+
key_states (`torch.Tensor`):
|
583 |
+
Input key states to be passed to Flash Attention API
|
584 |
+
value_states (`torch.Tensor`):
|
585 |
+
Input value states to be passed to Flash Attention API
|
586 |
+
attention_mask (`torch.Tensor`):
|
587 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
588 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
589 |
+
dropout (`int`, *optional*):
|
590 |
+
Attention dropout
|
591 |
+
softmax_scale (`float`, *optional*):
|
592 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
593 |
+
"""
|
594 |
+
if not self._flash_attn_uses_top_left_mask:
|
595 |
+
causal = self.is_causal
|
596 |
+
else:
|
597 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
598 |
+
causal = self.is_causal and query_length != 1
|
599 |
+
|
600 |
+
# Contains at least one padding token in the sequence
|
601 |
+
if attention_mask is not None:
|
602 |
+
batch_size = query_states.shape[0]
|
603 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
604 |
+
query_states, key_states, value_states, attention_mask, query_length
|
605 |
+
)
|
606 |
+
|
607 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
608 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
609 |
+
|
610 |
+
attn_output_unpad = flash_attn_varlen_func(
|
611 |
+
query_states,
|
612 |
+
key_states,
|
613 |
+
value_states,
|
614 |
+
cu_seqlens_q=cu_seqlens_q,
|
615 |
+
cu_seqlens_k=cu_seqlens_k,
|
616 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
617 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
618 |
+
dropout_p=dropout,
|
619 |
+
softmax_scale=softmax_scale,
|
620 |
+
causal=causal,
|
621 |
+
)
|
622 |
+
|
623 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
624 |
+
else:
|
625 |
+
attn_output = flash_attn_func(
|
626 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
627 |
+
)
|
628 |
+
|
629 |
+
return attn_output
|
630 |
+
|
631 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
632 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
633 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
634 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
635 |
+
|
636 |
+
key_layer = index_first_axis(
|
637 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
638 |
+
)
|
639 |
+
value_layer = index_first_axis(
|
640 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
641 |
+
)
|
642 |
+
if query_length == kv_seq_len:
|
643 |
+
query_layer = index_first_axis(
|
644 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
645 |
+
)
|
646 |
+
cu_seqlens_q = cu_seqlens_k
|
647 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
648 |
+
indices_q = indices_k
|
649 |
+
elif query_length == 1:
|
650 |
+
max_seqlen_in_batch_q = 1
|
651 |
+
cu_seqlens_q = torch.arange(
|
652 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
653 |
+
) # There is a memcpy here, that is very bad.
|
654 |
+
indices_q = cu_seqlens_q[:-1]
|
655 |
+
query_layer = query_layer.squeeze(1)
|
656 |
+
else:
|
657 |
+
# The -q_len: slice assumes left padding.
|
658 |
+
attention_mask = attention_mask[:, -query_length:]
|
659 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
660 |
+
|
661 |
+
return (
|
662 |
+
query_layer,
|
663 |
+
key_layer,
|
664 |
+
value_layer,
|
665 |
+
indices_q,
|
666 |
+
(cu_seqlens_q, cu_seqlens_k),
|
667 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
668 |
+
)
|
669 |
+
|
670 |
+
|
671 |
+
ATTENTION_CLASSES = {
|
672 |
+
"eager": StableLmAttention,
|
673 |
+
"sdpa": StableLmSdpaAttention,
|
674 |
+
"flash_attention_2": StableLmFlashAttention2,
|
675 |
+
}
|
676 |
+
|
677 |
+
|
678 |
+
class StableLmDecoderLayer(nn.Module):
|
679 |
+
def __init__(self, config: StableLmConfig, layer_idx: int):
|
680 |
+
super().__init__()
|
681 |
+
self.hidden_size = config.hidden_size
|
682 |
+
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
683 |
+
self.mlp = StableLmMLP(config)
|
684 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
685 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
686 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
687 |
+
|
688 |
+
def forward(
|
689 |
+
self,
|
690 |
+
hidden_states: torch.Tensor,
|
691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
692 |
+
position_ids: Optional[torch.LongTensor] = None,
|
693 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
694 |
+
output_attentions: Optional[bool] = False,
|
695 |
+
use_cache: Optional[bool] = False,
|
696 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
697 |
+
"""
|
698 |
+
Args:
|
699 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
700 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
701 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
702 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
703 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
704 |
+
`[0, config.n_positions - 1]`.
|
705 |
+
|
706 |
+
[What are position IDs?](../glossary#position-ids)
|
707 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*):
|
708 |
+
cached past key and value projection states
|
709 |
+
output_attentions (`bool`, *optional*):
|
710 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
711 |
+
returned tensors for more detail.
|
712 |
+
use_cache (`bool`, *optional*):
|
713 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
714 |
+
(see `past_key_values`).
|
715 |
+
"""
|
716 |
+
|
717 |
+
residual = hidden_states
|
718 |
+
|
719 |
+
hidden_states = self.input_layernorm(hidden_states)
|
720 |
+
|
721 |
+
# Self Attention
|
722 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
723 |
+
hidden_states=hidden_states,
|
724 |
+
attention_mask=attention_mask,
|
725 |
+
position_ids=position_ids,
|
726 |
+
past_key_value=past_key_value,
|
727 |
+
output_attentions=output_attentions,
|
728 |
+
use_cache=use_cache,
|
729 |
+
)
|
730 |
+
hidden_states = residual + hidden_states
|
731 |
+
|
732 |
+
# Fully Connected
|
733 |
+
residual = hidden_states
|
734 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
735 |
+
hidden_states = self.mlp(hidden_states)
|
736 |
+
|
737 |
+
hidden_states = self.dropout(hidden_states)
|
738 |
+
hidden_states = hidden_states + residual
|
739 |
+
|
740 |
+
outputs = (hidden_states,)
|
741 |
+
|
742 |
+
if output_attentions:
|
743 |
+
outputs += (self_attn_weights,)
|
744 |
+
|
745 |
+
if use_cache:
|
746 |
+
outputs += (present_key_value,)
|
747 |
+
|
748 |
+
return outputs
|
749 |
+
|
750 |
+
|
751 |
+
STABLELM_START_DOCSTRING = r"""
|
752 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
753 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
754 |
+
etc.)
|
755 |
+
|
756 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
757 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
758 |
+
and behavior.
|
759 |
+
|
760 |
+
Parameters:
|
761 |
+
config ([`StableLmConfig`]):
|
762 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
763 |
+
load the weights associated with the model, only the configuration. Check out the
|
764 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
765 |
+
"""
|
766 |
+
|
767 |
+
|
768 |
+
@add_start_docstrings(
|
769 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
770 |
+
STABLELM_START_DOCSTRING,
|
771 |
+
)
|
772 |
+
class StableLmPreTrainedModel(PreTrainedModel):
|
773 |
+
config_class = StableLmConfig
|
774 |
+
base_model_prefix = "model"
|
775 |
+
supports_gradient_checkpointing = True
|
776 |
+
_no_split_modules = ["StableLmDecoderLayer"]
|
777 |
+
_skip_keys_device_placement = "past_key_values"
|
778 |
+
_supports_flash_attn_2 = True
|
779 |
+
_supports_cache_class = True
|
780 |
+
_supports_sdpa = True
|
781 |
+
|
782 |
+
def _init_weights(self, module):
|
783 |
+
std = self.config.initializer_range
|
784 |
+
if isinstance(module, nn.Linear):
|
785 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
786 |
+
if module.bias is not None:
|
787 |
+
module.bias.data.zero_()
|
788 |
+
elif isinstance(module, nn.Embedding):
|
789 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
790 |
+
if module.padding_idx is not None:
|
791 |
+
module.weight.data[module.padding_idx].zero_()
|
792 |
+
|
793 |
+
|
794 |
+
STABLELM_INPUTS_DOCSTRING = r"""
|
795 |
+
Args:
|
796 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
797 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
798 |
+
it.
|
799 |
+
|
800 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
801 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
802 |
+
|
803 |
+
[What are input IDs?](../glossary#input-ids)
|
804 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
805 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
806 |
+
|
807 |
+
- 1 for tokens that are **not masked**,
|
808 |
+
- 0 for tokens that are **masked**.
|
809 |
+
|
810 |
+
[What are attention masks?](../glossary#attention-mask)
|
811 |
+
|
812 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
813 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
814 |
+
|
815 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
816 |
+
`past_key_values`).
|
817 |
+
|
818 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
819 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
820 |
+
information on the default strategy.
|
821 |
+
|
822 |
+
- 1 indicates the head is **not masked**,
|
823 |
+
- 0 indicates the head is **masked**.
|
824 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
826 |
+
config.n_positions - 1]`.
|
827 |
+
|
828 |
+
[What are position IDs?](../glossary#position-ids)
|
829 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
830 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
831 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
832 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
833 |
+
|
834 |
+
Two formats are allowed:
|
835 |
+
- a [`~cache_utils.Cache`] instance;
|
836 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
837 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
838 |
+
cache format.
|
839 |
+
|
840 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
841 |
+
legacy cache format will be returned.
|
842 |
+
|
843 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
844 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
845 |
+
of shape `(batch_size, sequence_length)`.
|
846 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
847 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
848 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
849 |
+
model's internal embedding lookup matrix.
|
850 |
+
use_cache (`bool`, *optional*):
|
851 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
852 |
+
`past_key_values`).
|
853 |
+
output_attentions (`bool`, *optional*):
|
854 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
855 |
+
tensors for more detail.
|
856 |
+
output_hidden_states (`bool`, *optional*):
|
857 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
858 |
+
more detail.
|
859 |
+
return_dict (`bool`, *optional*):
|
860 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
861 |
+
"""
|
862 |
+
|
863 |
+
|
864 |
+
@add_start_docstrings(
|
865 |
+
"The bare StableLm Model outputting raw hidden-states without any specific head on top.",
|
866 |
+
STABLELM_START_DOCSTRING,
|
867 |
+
)
|
868 |
+
class StableLmModel(StableLmPreTrainedModel):
|
869 |
+
"""
|
870 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`]
|
871 |
+
|
872 |
+
Args:
|
873 |
+
config: StableLmConfig
|
874 |
+
"""
|
875 |
+
|
876 |
+
def __init__(self, config: StableLmConfig):
|
877 |
+
super().__init__(config)
|
878 |
+
self.padding_idx = config.pad_token_id
|
879 |
+
self.vocab_size = config.vocab_size
|
880 |
+
|
881 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
882 |
+
self.layers = nn.ModuleList(
|
883 |
+
[StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
884 |
+
)
|
885 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
886 |
+
|
887 |
+
self._attn_implementation = config._attn_implementation
|
888 |
+
self.gradient_checkpointing = False
|
889 |
+
# Initialize weights and apply final processing
|
890 |
+
self.post_init()
|
891 |
+
|
892 |
+
def get_input_embeddings(self):
|
893 |
+
return self.embed_tokens
|
894 |
+
|
895 |
+
def set_input_embeddings(self, value):
|
896 |
+
self.embed_tokens = value
|
897 |
+
|
898 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
899 |
+
def forward(
|
900 |
+
self,
|
901 |
+
input_ids: torch.LongTensor = None,
|
902 |
+
attention_mask: Optional[torch.Tensor] = None,
|
903 |
+
position_ids: Optional[torch.LongTensor] = None,
|
904 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
905 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
906 |
+
use_cache: Optional[bool] = None,
|
907 |
+
output_attentions: Optional[bool] = None,
|
908 |
+
output_hidden_states: Optional[bool] = None,
|
909 |
+
return_dict: Optional[bool] = None,
|
910 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
911 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
912 |
+
output_hidden_states = (
|
913 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
914 |
+
)
|
915 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
916 |
+
|
917 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
918 |
+
|
919 |
+
# retrieve input_ids and inputs_embeds
|
920 |
+
if input_ids is not None and inputs_embeds is not None:
|
921 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
922 |
+
elif input_ids is not None:
|
923 |
+
batch_size, seq_length = input_ids.shape
|
924 |
+
elif inputs_embeds is not None:
|
925 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
926 |
+
else:
|
927 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
928 |
+
|
929 |
+
seq_length_with_past = seq_length
|
930 |
+
past_key_values_length = 0
|
931 |
+
|
932 |
+
if self.gradient_checkpointing and self.training:
|
933 |
+
if use_cache:
|
934 |
+
logger.warning_once(
|
935 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
936 |
+
)
|
937 |
+
use_cache = False
|
938 |
+
|
939 |
+
if use_cache:
|
940 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
941 |
+
if use_legacy_cache:
|
942 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
943 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
944 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
945 |
+
|
946 |
+
if position_ids is None:
|
947 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
948 |
+
position_ids = torch.arange(
|
949 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
950 |
+
)
|
951 |
+
position_ids = position_ids.unsqueeze(0)
|
952 |
+
|
953 |
+
if inputs_embeds is None:
|
954 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
955 |
+
# embed positions
|
956 |
+
if self._attn_implementation == "flash_attention_2":
|
957 |
+
# 2d mask is passed through the layers
|
958 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
959 |
+
# for output_attentions case used fallback to eager attention realization
|
960 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
961 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
962 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
963 |
+
)
|
964 |
+
else:
|
965 |
+
# 4d mask is passed through the layers
|
966 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
967 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
968 |
+
)
|
969 |
+
|
970 |
+
hidden_states = inputs_embeds
|
971 |
+
|
972 |
+
# decoder layers
|
973 |
+
all_hidden_states = () if output_hidden_states else None
|
974 |
+
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
+
|
977 |
+
for decoder_layer in self.layers:
|
978 |
+
if output_hidden_states:
|
979 |
+
all_hidden_states += (hidden_states,)
|
980 |
+
|
981 |
+
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
984 |
+
hidden_states,
|
985 |
+
attention_mask,
|
986 |
+
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
+
)
|
990 |
+
else:
|
991 |
+
layer_outputs = decoder_layer(
|
992 |
+
hidden_states,
|
993 |
+
attention_mask=attention_mask,
|
994 |
+
position_ids=position_ids,
|
995 |
+
past_key_value=past_key_values,
|
996 |
+
output_attentions=output_attentions,
|
997 |
+
use_cache=use_cache,
|
998 |
+
)
|
999 |
+
|
1000 |
+
hidden_states = layer_outputs[0]
|
1001 |
+
|
1002 |
+
if use_cache:
|
1003 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1004 |
+
|
1005 |
+
if output_attentions:
|
1006 |
+
all_self_attns += (layer_outputs[1],)
|
1007 |
+
|
1008 |
+
hidden_states = self.norm(hidden_states)
|
1009 |
+
|
1010 |
+
# add hidden states from the last decoder layer
|
1011 |
+
if output_hidden_states:
|
1012 |
+
all_hidden_states += (hidden_states,)
|
1013 |
+
|
1014 |
+
next_cache = None
|
1015 |
+
if use_cache:
|
1016 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1017 |
+
|
1018 |
+
if not return_dict:
|
1019 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1020 |
+
return BaseModelOutputWithPast(
|
1021 |
+
last_hidden_state=hidden_states,
|
1022 |
+
past_key_values=next_cache,
|
1023 |
+
hidden_states=all_hidden_states,
|
1024 |
+
attentions=all_self_attns,
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
|
1028 |
+
# Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM with PERSIMMON->STABLELM,Persimmon->StableLm
|
1029 |
+
class StableLmForCausalLM(StableLmPreTrainedModel):
|
1030 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1031 |
+
|
1032 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm
|
1033 |
+
def __init__(self, config):
|
1034 |
+
super().__init__(config)
|
1035 |
+
self.model = StableLmModel(config)
|
1036 |
+
self.vocab_size = config.vocab_size
|
1037 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1038 |
+
|
1039 |
+
# Initialize weights and apply final processing
|
1040 |
+
self.post_init()
|
1041 |
+
|
1042 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1043 |
+
def get_input_embeddings(self):
|
1044 |
+
return self.model.embed_tokens
|
1045 |
+
|
1046 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1047 |
+
def set_input_embeddings(self, value):
|
1048 |
+
self.model.embed_tokens = value
|
1049 |
+
|
1050 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1051 |
+
def get_output_embeddings(self):
|
1052 |
+
return self.lm_head
|
1053 |
+
|
1054 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1055 |
+
def set_output_embeddings(self, new_embeddings):
|
1056 |
+
self.lm_head = new_embeddings
|
1057 |
+
|
1058 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1059 |
+
def set_decoder(self, decoder):
|
1060 |
+
self.model = decoder
|
1061 |
+
|
1062 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1063 |
+
def get_decoder(self):
|
1064 |
+
return self.model
|
1065 |
+
|
1066 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1067 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1068 |
+
# Ignore copy
|
1069 |
+
def forward(
|
1070 |
+
self,
|
1071 |
+
input_ids: torch.LongTensor = None,
|
1072 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1073 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1074 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1075 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1076 |
+
labels: Optional[torch.LongTensor] = None,
|
1077 |
+
use_cache: Optional[bool] = None,
|
1078 |
+
output_attentions: Optional[bool] = None,
|
1079 |
+
output_hidden_states: Optional[bool] = None,
|
1080 |
+
return_dict: Optional[bool] = None,
|
1081 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1082 |
+
r"""
|
1083 |
+
Args:
|
1084 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1085 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1086 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1087 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1088 |
+
|
1089 |
+
Returns:
|
1090 |
+
|
1091 |
+
Example:
|
1092 |
+
|
1093 |
+
```python
|
1094 |
+
>>> from transformers import AutoTokenizer, StableLmForCausalLM
|
1095 |
+
|
1096 |
+
>>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1097 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t")
|
1098 |
+
|
1099 |
+
>>> prompt = "The weather is always wonderful in"
|
1100 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1101 |
+
|
1102 |
+
>>> # Generate
|
1103 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1104 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1105 |
+
'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by'
|
1106 |
+
```"""
|
1107 |
+
|
1108 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1109 |
+
output_hidden_states = (
|
1110 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1111 |
+
)
|
1112 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1113 |
+
|
1114 |
+
outputs = self.model(
|
1115 |
+
input_ids=input_ids,
|
1116 |
+
attention_mask=attention_mask,
|
1117 |
+
position_ids=position_ids,
|
1118 |
+
past_key_values=past_key_values,
|
1119 |
+
inputs_embeds=inputs_embeds,
|
1120 |
+
use_cache=use_cache,
|
1121 |
+
output_attentions=output_attentions,
|
1122 |
+
output_hidden_states=output_hidden_states,
|
1123 |
+
return_dict=return_dict,
|
1124 |
+
)
|
1125 |
+
|
1126 |
+
hidden_states = outputs[0]
|
1127 |
+
logits = self.lm_head(hidden_states)
|
1128 |
+
|
1129 |
+
loss = None
|
1130 |
+
if labels is not None:
|
1131 |
+
# Shift so that tokens < n predict n
|
1132 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1133 |
+
shift_labels = labels[..., 1:].contiguous()
|
1134 |
+
# Flatten the tokens
|
1135 |
+
loss_fct = CrossEntropyLoss()
|
1136 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1137 |
+
shift_labels = shift_labels.view(-1)
|
1138 |
+
# Enable model parallelism
|
1139 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1140 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1141 |
+
|
1142 |
+
if not return_dict:
|
1143 |
+
output = (logits,) + outputs[1:]
|
1144 |
+
return (loss,) + output if loss is not None else output
|
1145 |
+
|
1146 |
+
return CausalLMOutputWithPast(
|
1147 |
+
loss=loss,
|
1148 |
+
logits=logits,
|
1149 |
+
past_key_values=outputs.past_key_values,
|
1150 |
+
hidden_states=outputs.hidden_states,
|
1151 |
+
attentions=outputs.attentions,
|
1152 |
+
)
|
1153 |
+
|
1154 |
+
def prepare_inputs_for_generation(
|
1155 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1156 |
+
):
|
1157 |
+
if past_key_values is not None:
|
1158 |
+
if isinstance(past_key_values, Cache):
|
1159 |
+
cache_length = past_key_values.get_seq_length()
|
1160 |
+
past_length = past_key_values.seen_tokens
|
1161 |
+
max_cache_length = past_key_values.get_max_length()
|
1162 |
+
else:
|
1163 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1164 |
+
max_cache_length = None
|
1165 |
+
|
1166 |
+
# Keep only the unprocessed tokens:
|
1167 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1168 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1169 |
+
# input)
|
1170 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1171 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1172 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1173 |
+
# input_ids based on the past_length.
|
1174 |
+
elif past_length < input_ids.shape[1]:
|
1175 |
+
input_ids = input_ids[:, past_length:]
|
1176 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1177 |
+
|
1178 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1179 |
+
if (
|
1180 |
+
max_cache_length is not None
|
1181 |
+
and attention_mask is not None
|
1182 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1183 |
+
):
|
1184 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1185 |
+
|
1186 |
+
position_ids = kwargs.get("position_ids", None)
|
1187 |
+
if attention_mask is not None and position_ids is None:
|
1188 |
+
# create position_ids on the fly for batch generation
|
1189 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1190 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1191 |
+
if past_key_values:
|
1192 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1193 |
+
|
1194 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1195 |
+
if inputs_embeds is not None and past_key_values is None:
|
1196 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1197 |
+
else:
|
1198 |
+
model_inputs = {"input_ids": input_ids}
|
1199 |
+
|
1200 |
+
model_inputs.update(
|
1201 |
+
{
|
1202 |
+
"position_ids": position_ids,
|
1203 |
+
"past_key_values": past_key_values,
|
1204 |
+
"use_cache": kwargs.get("use_cache"),
|
1205 |
+
"attention_mask": attention_mask,
|
1206 |
+
}
|
1207 |
+
)
|
1208 |
+
return model_inputs
|
1209 |
+
|
1210 |
+
@staticmethod
|
1211 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1212 |
+
reordered_past = ()
|
1213 |
+
for layer_past in past_key_values:
|
1214 |
+
reordered_past += (
|
1215 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1216 |
+
)
|
1217 |
+
return reordered_past
|
1218 |
+
|
1219 |
+
|
1220 |
+
@add_start_docstrings(
|
1221 |
+
"""
|
1222 |
+
The StableLm transformer with a sequence classification head on top (linear layer).
|
1223 |
+
|
1224 |
+
[`StableLmForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1225 |
+
models (e.g. GPT-2) do.
|
1226 |
+
|
1227 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1228 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1229 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1230 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1231 |
+
each row of the batch).
|
1232 |
+
""",
|
1233 |
+
STABLELM_START_DOCSTRING,
|
1234 |
+
)
|
1235 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->STABLELM,Llama->StableLm
|
1236 |
+
class StableLmForSequenceClassification(StableLmPreTrainedModel):
|
1237 |
+
def __init__(self, config):
|
1238 |
+
super().__init__(config)
|
1239 |
+
self.num_labels = config.num_labels
|
1240 |
+
self.model = StableLmModel(config)
|
1241 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1242 |
+
|
1243 |
+
# Initialize weights and apply final processing
|
1244 |
+
self.post_init()
|
1245 |
+
|
1246 |
+
def get_input_embeddings(self):
|
1247 |
+
return self.model.embed_tokens
|
1248 |
+
|
1249 |
+
def set_input_embeddings(self, value):
|
1250 |
+
self.model.embed_tokens = value
|
1251 |
+
|
1252 |
+
@add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING)
|
1253 |
+
def forward(
|
1254 |
+
self,
|
1255 |
+
input_ids: torch.LongTensor = None,
|
1256 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1257 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1258 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1259 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1260 |
+
labels: Optional[torch.LongTensor] = None,
|
1261 |
+
use_cache: Optional[bool] = None,
|
1262 |
+
output_attentions: Optional[bool] = None,
|
1263 |
+
output_hidden_states: Optional[bool] = None,
|
1264 |
+
return_dict: Optional[bool] = None,
|
1265 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1266 |
+
r"""
|
1267 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1268 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1269 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1270 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1271 |
+
"""
|
1272 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1273 |
+
|
1274 |
+
transformer_outputs = self.model(
|
1275 |
+
input_ids,
|
1276 |
+
attention_mask=attention_mask,
|
1277 |
+
position_ids=position_ids,
|
1278 |
+
past_key_values=past_key_values,
|
1279 |
+
inputs_embeds=inputs_embeds,
|
1280 |
+
use_cache=use_cache,
|
1281 |
+
output_attentions=output_attentions,
|
1282 |
+
output_hidden_states=output_hidden_states,
|
1283 |
+
return_dict=return_dict,
|
1284 |
+
)
|
1285 |
+
hidden_states = transformer_outputs[0]
|
1286 |
+
logits = self.score(hidden_states)
|
1287 |
+
|
1288 |
+
if input_ids is not None:
|
1289 |
+
batch_size = input_ids.shape[0]
|
1290 |
+
else:
|
1291 |
+
batch_size = inputs_embeds.shape[0]
|
1292 |
+
|
1293 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1294 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1295 |
+
if self.config.pad_token_id is None:
|
1296 |
+
sequence_lengths = -1
|
1297 |
+
else:
|
1298 |
+
if input_ids is not None:
|
1299 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1300 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1301 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1302 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1303 |
+
else:
|
1304 |
+
sequence_lengths = -1
|
1305 |
+
|
1306 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1307 |
+
|
1308 |
+
loss = None
|
1309 |
+
if labels is not None:
|
1310 |
+
labels = labels.to(logits.device)
|
1311 |
+
if self.config.problem_type is None:
|
1312 |
+
if self.num_labels == 1:
|
1313 |
+
self.config.problem_type = "regression"
|
1314 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1315 |
+
self.config.problem_type = "single_label_classification"
|
1316 |
+
else:
|
1317 |
+
self.config.problem_type = "multi_label_classification"
|
1318 |
+
|
1319 |
+
if self.config.problem_type == "regression":
|
1320 |
+
loss_fct = MSELoss()
|
1321 |
+
if self.num_labels == 1:
|
1322 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1323 |
+
else:
|
1324 |
+
loss = loss_fct(pooled_logits, labels)
|
1325 |
+
elif self.config.problem_type == "single_label_classification":
|
1326 |
+
loss_fct = CrossEntropyLoss()
|
1327 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1328 |
+
elif self.config.problem_type == "multi_label_classification":
|
1329 |
+
loss_fct = BCEWithLogitsLoss()
|
1330 |
+
loss = loss_fct(pooled_logits, labels)
|
1331 |
+
if not return_dict:
|
1332 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1333 |
+
return ((loss,) + output) if loss is not None else output
|
1334 |
+
|
1335 |
+
return SequenceClassifierOutputWithPast(
|
1336 |
+
loss=loss,
|
1337 |
+
logits=pooled_logits,
|
1338 |
+
past_key_values=transformer_outputs.past_key_values,
|
1339 |
+
hidden_states=transformer_outputs.hidden_states,
|
1340 |
+
attentions=transformer_outputs.attentions,
|
1341 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|reg_extra|>",
|
4 |
+
"<|endoftext|>",
|
5 |
+
"<|fim_prefix|>",
|
6 |
+
"<|fim_middle|>",
|
7 |
+
"<|fim_suffix|>",
|
8 |
+
"<|fim_pad|>",
|
9 |
+
"<gh_stars>",
|
10 |
+
"<filename>",
|
11 |
+
"<issue_start>",
|
12 |
+
"<issue_comment>",
|
13 |
+
"<issue_closed>",
|
14 |
+
"<jupyter_start>",
|
15 |
+
"<jupyter_text>",
|
16 |
+
"<jupyter_code>",
|
17 |
+
"<jupyter_output>",
|
18 |
+
"<empty_output>",
|
19 |
+
"<commit_before>",
|
20 |
+
"<commit_msg>",
|
21 |
+
"<commit_after>",
|
22 |
+
"<reponame>",
|
23 |
+
"<|endofprompt|>",
|
24 |
+
"<|im_start|>",
|
25 |
+
"<|im_end|>",
|
26 |
+
"<|pause|>",
|
27 |
+
"<|reg0|>",
|
28 |
+
"<|reg1|>",
|
29 |
+
"<|reg2|>",
|
30 |
+
"<|reg3|>",
|
31 |
+
"<|reg4|>",
|
32 |
+
"<|reg5|>",
|
33 |
+
"<|reg6|>",
|
34 |
+
"<|reg7|>",
|
35 |
+
"<|extra0|>"
|
36 |
+
],
|
37 |
+
"bos_token": "<|endoftext|>",
|
38 |
+
"eos_token": "<|endoftext|>",
|
39 |
+
"unk_token": "<|endoftext|>"
|
40 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"additional_special_tokens": [
|
4 |
+
"<|reg_extra|>",
|
5 |
+
"<|endoftext|>",
|
6 |
+
"<|fim_prefix|>",
|
7 |
+
"<|fim_middle|>",
|
8 |
+
"<|fim_suffix|>",
|
9 |
+
"<|fim_pad|>",
|
10 |
+
"<gh_stars>",
|
11 |
+
"<filename>",
|
12 |
+
"<issue_start>",
|
13 |
+
"<issue_comment>",
|
14 |
+
"<issue_closed>",
|
15 |
+
"<jupyter_start>",
|
16 |
+
"<jupyter_text>",
|
17 |
+
"<jupyter_code>",
|
18 |
+
"<jupyter_output>",
|
19 |
+
"<empty_output>",
|
20 |
+
"<commit_before>",
|
21 |
+
"<commit_msg>",
|
22 |
+
"<commit_after>",
|
23 |
+
"<reponame>",
|
24 |
+
"<|endofprompt|>",
|
25 |
+
"<|im_start|>",
|
26 |
+
"<|im_end|>",
|
27 |
+
"<|pause|>",
|
28 |
+
"<|reg0|>",
|
29 |
+
"<|reg1|>",
|
30 |
+
"<|reg2|>",
|
31 |
+
"<|reg3|>",
|
32 |
+
"<|reg4|>",
|
33 |
+
"<|reg5|>",
|
34 |
+
"<|reg6|>",
|
35 |
+
"<|reg7|>",
|
36 |
+
"<|extra0|>"
|
37 |
+
],
|
38 |
+
"bos_token": "<|endoftext|>",
|
39 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
40 |
+
"clean_up_tokenization_spaces": true,
|
41 |
+
"eos_token": "<|endoftext|>",
|
42 |
+
"tokenizer_class": "GPT2Tokenizer",
|
43 |
+
"model_max_length": 2048,
|
44 |
+
"pad_token": "<|endoftext|>",
|
45 |
+
"unk_token": "<|endoftext|>"
|
46 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|