--- library_name: transformers language: - he license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 30.46731826511912 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5304 - Wer: 30.4673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.3345 | 1.7778 | 500 | 0.4103 | 43.8302 | | 0.1379 | 3.5556 | 1000 | 0.4276 | 37.6756 | | 0.0612 | 5.3333 | 1500 | 0.4672 | 32.8039 | | 0.0234 | 7.1111 | 2000 | 0.4806 | 32.9948 | | 0.0167 | 8.8889 | 2500 | 0.4829 | 31.0247 | | 0.0074 | 10.6667 | 3000 | 0.5092 | 34.4762 | | 0.0023 | 12.4444 | 3500 | 0.5247 | 29.9786 | | 0.0008 | 14.2222 | 4000 | 0.5304 | 30.4673 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1