Pushing files to the repo-gabcares/XGBClassifier-Sepsis from the directory- ../models/huggingface/XGBClassifier
Browse files- README.md +356 -0
- XGBClassifier.joblib +3 -0
- config.json +83 -0
README.md
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-classification
|
8 |
+
model_format: pickle
|
9 |
+
model_file: XGBClassifier.joblib
|
10 |
+
widget:
|
11 |
+
- structuredData:
|
12 |
+
age:
|
13 |
+
- 50
|
14 |
+
- 31
|
15 |
+
- 32
|
16 |
+
bd2:
|
17 |
+
- 0.627
|
18 |
+
- 0.351
|
19 |
+
- 0.672
|
20 |
+
id:
|
21 |
+
- ICU200010
|
22 |
+
- ICU200011
|
23 |
+
- ICU200012
|
24 |
+
insurance:
|
25 |
+
- 0
|
26 |
+
- 0
|
27 |
+
- 1
|
28 |
+
m11:
|
29 |
+
- 33.6
|
30 |
+
- 26.6
|
31 |
+
- 23.3
|
32 |
+
pl:
|
33 |
+
- 148
|
34 |
+
- 85
|
35 |
+
- 183
|
36 |
+
pr:
|
37 |
+
- 72
|
38 |
+
- 66
|
39 |
+
- 64
|
40 |
+
prg:
|
41 |
+
- 6
|
42 |
+
- 1
|
43 |
+
- 8
|
44 |
+
sepsis:
|
45 |
+
- Positive
|
46 |
+
- Negative
|
47 |
+
- Positive
|
48 |
+
sk:
|
49 |
+
- 35
|
50 |
+
- 29
|
51 |
+
- 0
|
52 |
+
ts:
|
53 |
+
- 0
|
54 |
+
- 0
|
55 |
+
- 0
|
56 |
+
---
|
57 |
+
|
58 |
+
# Model description
|
59 |
+
|
60 |
+
[More Information Needed]
|
61 |
+
|
62 |
+
## Intended uses & limitations
|
63 |
+
|
64 |
+
[More Information Needed]
|
65 |
+
|
66 |
+
## Training Procedure
|
67 |
+
|
68 |
+
[More Information Needed]
|
69 |
+
|
70 |
+
### Hyperparameters
|
71 |
+
|
72 |
+
<details>
|
73 |
+
<summary> Click to expand </summary>
|
74 |
+
|
75 |
+
| Hyperparameter | Value |
|
76 |
+
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|
77 |
+
| memory | |
|
78 |
+
| steps | [('preprocessor', ColumnTransformer(transformers=[('numerical_pipeline',<br /> Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]),<br /> ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br /> 'age']),<br /> ('categorical_pipeline',<br /> Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_...<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['insurance']),<br /> ('feature_creation_pipeline',<br /> Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['age'])])), ('feature-selection', SelectKBest(k='all',<br /> score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=20, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=10, n_jobs=-1,<br /> num_parallel_tree=None, random_state=2024, ...))] |
|
79 |
+
| verbose | False |
|
80 |
+
| preprocessor | ColumnTransformer(transformers=[('numerical_pipeline',<br /> Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]),<br /> ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2',<br /> 'age']),<br /> ('categorical_pipeline',<br /> Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_...<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['insurance']),<br /> ('feature_creation_pipeline',<br /> Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer',<br /> SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]),<br /> ['age'])]) |
|
81 |
+
| feature-selection | SelectKBest(k='all',<br /> score_func=<function mutual_info_classif at 0x000001E7EDA4E480>) |
|
82 |
+
| classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=20, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=10, n_jobs=-1,<br /> num_parallel_tree=None, random_state=2024, ...) |
|
83 |
+
| preprocessor__force_int_remainder_cols | True |
|
84 |
+
| preprocessor__n_jobs | |
|
85 |
+
| preprocessor__remainder | drop |
|
86 |
+
| preprocessor__sparse_threshold | 0.3 |
|
87 |
+
| preprocessor__transformer_weights | |
|
88 |
+
| preprocessor__transformers | [('numerical_pipeline', Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]), ['age'])] |
|
89 |
+
| preprocessor__verbose | False |
|
90 |
+
| preprocessor__verbose_feature_names_out | True |
|
91 |
+
| preprocessor__numerical_pipeline | Pipeline(steps=[('log_transformations',<br /> FunctionTransformer(func=<ufunc 'log1p'>)),<br /> ('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', RobustScaler())]) |
|
92 |
+
| preprocessor__categorical_pipeline | Pipeline(steps=[('as_categorical',<br /> FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]) |
|
93 |
+
| preprocessor__feature_creation_pipeline | Pipeline(steps=[('feature_creation',<br /> FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),<br /> ('imputer', SimpleImputer(strategy='most_frequent')),<br /> ('encoder',<br /> OneHotEncoder(drop='first',<br /> handle_unknown='infrequent_if_exist',<br /> sparse_output=False))]) |
|
94 |
+
| preprocessor__numerical_pipeline__memory | |
|
95 |
+
| preprocessor__numerical_pipeline__steps | [('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())] |
|
96 |
+
| preprocessor__numerical_pipeline__verbose | False |
|
97 |
+
| preprocessor__numerical_pipeline__log_transformations | FunctionTransformer(func=<ufunc 'log1p'>) |
|
98 |
+
| preprocessor__numerical_pipeline__imputer | SimpleImputer(strategy='median') |
|
99 |
+
| preprocessor__numerical_pipeline__scaler | RobustScaler() |
|
100 |
+
| preprocessor__numerical_pipeline__log_transformations__accept_sparse | False |
|
101 |
+
| preprocessor__numerical_pipeline__log_transformations__check_inverse | True |
|
102 |
+
| preprocessor__numerical_pipeline__log_transformations__feature_names_out | |
|
103 |
+
| preprocessor__numerical_pipeline__log_transformations__func | <ufunc 'log1p'> |
|
104 |
+
| preprocessor__numerical_pipeline__log_transformations__inv_kw_args | |
|
105 |
+
| preprocessor__numerical_pipeline__log_transformations__inverse_func | |
|
106 |
+
| preprocessor__numerical_pipeline__log_transformations__kw_args | |
|
107 |
+
| preprocessor__numerical_pipeline__log_transformations__validate | False |
|
108 |
+
| preprocessor__numerical_pipeline__imputer__add_indicator | False |
|
109 |
+
| preprocessor__numerical_pipeline__imputer__copy | True |
|
110 |
+
| preprocessor__numerical_pipeline__imputer__fill_value | |
|
111 |
+
| preprocessor__numerical_pipeline__imputer__keep_empty_features | False |
|
112 |
+
| preprocessor__numerical_pipeline__imputer__missing_values | nan |
|
113 |
+
| preprocessor__numerical_pipeline__imputer__strategy | median |
|
114 |
+
| preprocessor__numerical_pipeline__scaler__copy | True |
|
115 |
+
| preprocessor__numerical_pipeline__scaler__quantile_range | (25.0, 75.0) |
|
116 |
+
| preprocessor__numerical_pipeline__scaler__unit_variance | False |
|
117 |
+
| preprocessor__numerical_pipeline__scaler__with_centering | True |
|
118 |
+
| preprocessor__numerical_pipeline__scaler__with_scaling | True |
|
119 |
+
| preprocessor__categorical_pipeline__memory | |
|
120 |
+
| preprocessor__categorical_pipeline__steps | [('as_categorical', FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False))] |
|
121 |
+
| preprocessor__categorical_pipeline__verbose | False |
|
122 |
+
| preprocessor__categorical_pipeline__as_categorical | FunctionTransformer(func=<function as_category at 0x000001E7F1450680>) |
|
123 |
+
| preprocessor__categorical_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
|
124 |
+
| preprocessor__categorical_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False) |
|
125 |
+
| preprocessor__categorical_pipeline__as_categorical__accept_sparse | False |
|
126 |
+
| preprocessor__categorical_pipeline__as_categorical__check_inverse | True |
|
127 |
+
| preprocessor__categorical_pipeline__as_categorical__feature_names_out | |
|
128 |
+
| preprocessor__categorical_pipeline__as_categorical__func | <function as_category at 0x000001E7F1450680> |
|
129 |
+
| preprocessor__categorical_pipeline__as_categorical__inv_kw_args | |
|
130 |
+
| preprocessor__categorical_pipeline__as_categorical__inverse_func | |
|
131 |
+
| preprocessor__categorical_pipeline__as_categorical__kw_args | |
|
132 |
+
| preprocessor__categorical_pipeline__as_categorical__validate | False |
|
133 |
+
| preprocessor__categorical_pipeline__imputer__add_indicator | False |
|
134 |
+
| preprocessor__categorical_pipeline__imputer__copy | True |
|
135 |
+
| preprocessor__categorical_pipeline__imputer__fill_value | |
|
136 |
+
| preprocessor__categorical_pipeline__imputer__keep_empty_features | False |
|
137 |
+
| preprocessor__categorical_pipeline__imputer__missing_values | nan |
|
138 |
+
| preprocessor__categorical_pipeline__imputer__strategy | most_frequent |
|
139 |
+
| preprocessor__categorical_pipeline__encoder__categories | auto |
|
140 |
+
| preprocessor__categorical_pipeline__encoder__drop | first |
|
141 |
+
| preprocessor__categorical_pipeline__encoder__dtype | <class 'numpy.float64'> |
|
142 |
+
| preprocessor__categorical_pipeline__encoder__feature_name_combiner | concat |
|
143 |
+
| preprocessor__categorical_pipeline__encoder__handle_unknown | infrequent_if_exist |
|
144 |
+
| preprocessor__categorical_pipeline__encoder__max_categories | |
|
145 |
+
| preprocessor__categorical_pipeline__encoder__min_frequency | |
|
146 |
+
| preprocessor__categorical_pipeline__encoder__sparse_output | False |
|
147 |
+
| preprocessor__feature_creation_pipeline__memory | |
|
148 |
+
| preprocessor__feature_creation_pipeline__steps | [('feature_creation', FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False))] |
|
149 |
+
| preprocessor__feature_creation_pipeline__verbose | False |
|
150 |
+
| preprocessor__feature_creation_pipeline__feature_creation | FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>) |
|
151 |
+
| preprocessor__feature_creation_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
|
152 |
+
| preprocessor__feature_creation_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',<br /> sparse_output=False) |
|
153 |
+
| preprocessor__feature_creation_pipeline__feature_creation__accept_sparse | False |
|
154 |
+
| preprocessor__feature_creation_pipeline__feature_creation__check_inverse | True |
|
155 |
+
| preprocessor__feature_creation_pipeline__feature_creation__feature_names_out | |
|
156 |
+
| preprocessor__feature_creation_pipeline__feature_creation__func | <function feature_creation at 0x000001E7F14514E0> |
|
157 |
+
| preprocessor__feature_creation_pipeline__feature_creation__inv_kw_args | |
|
158 |
+
| preprocessor__feature_creation_pipeline__feature_creation__inverse_func | |
|
159 |
+
| preprocessor__feature_creation_pipeline__feature_creation__kw_args | |
|
160 |
+
| preprocessor__feature_creation_pipeline__feature_creation__validate | False |
|
161 |
+
| preprocessor__feature_creation_pipeline__imputer__add_indicator | False |
|
162 |
+
| preprocessor__feature_creation_pipeline__imputer__copy | True |
|
163 |
+
| preprocessor__feature_creation_pipeline__imputer__fill_value | |
|
164 |
+
| preprocessor__feature_creation_pipeline__imputer__keep_empty_features | False |
|
165 |
+
| preprocessor__feature_creation_pipeline__imputer__missing_values | nan |
|
166 |
+
| preprocessor__feature_creation_pipeline__imputer__strategy | most_frequent |
|
167 |
+
| preprocessor__feature_creation_pipeline__encoder__categories | auto |
|
168 |
+
| preprocessor__feature_creation_pipeline__encoder__drop | first |
|
169 |
+
| preprocessor__feature_creation_pipeline__encoder__dtype | <class 'numpy.float64'> |
|
170 |
+
| preprocessor__feature_creation_pipeline__encoder__feature_name_combiner | concat |
|
171 |
+
| preprocessor__feature_creation_pipeline__encoder__handle_unknown | infrequent_if_exist |
|
172 |
+
| preprocessor__feature_creation_pipeline__encoder__max_categories | |
|
173 |
+
| preprocessor__feature_creation_pipeline__encoder__min_frequency | |
|
174 |
+
| preprocessor__feature_creation_pipeline__encoder__sparse_output | False |
|
175 |
+
| feature-selection__k | all |
|
176 |
+
| feature-selection__score_func | <function mutual_info_classif at 0x000001E7EDA4E480> |
|
177 |
+
| classifier__objective | binary:logistic |
|
178 |
+
| classifier__base_score | |
|
179 |
+
| classifier__booster | |
|
180 |
+
| classifier__callbacks | |
|
181 |
+
| classifier__colsample_bylevel | |
|
182 |
+
| classifier__colsample_bynode | |
|
183 |
+
| classifier__colsample_bytree | |
|
184 |
+
| classifier__device | |
|
185 |
+
| classifier__early_stopping_rounds | |
|
186 |
+
| classifier__enable_categorical | False |
|
187 |
+
| classifier__eval_metric | |
|
188 |
+
| classifier__feature_types | |
|
189 |
+
| classifier__gamma | |
|
190 |
+
| classifier__grow_policy | |
|
191 |
+
| classifier__importance_type | |
|
192 |
+
| classifier__interaction_constraints | |
|
193 |
+
| classifier__learning_rate | |
|
194 |
+
| classifier__max_bin | |
|
195 |
+
| classifier__max_cat_threshold | |
|
196 |
+
| classifier__max_cat_to_onehot | |
|
197 |
+
| classifier__max_delta_step | |
|
198 |
+
| classifier__max_depth | 20 |
|
199 |
+
| classifier__max_leaves | |
|
200 |
+
| classifier__min_child_weight | |
|
201 |
+
| classifier__missing | nan |
|
202 |
+
| classifier__monotone_constraints | |
|
203 |
+
| classifier__multi_strategy | |
|
204 |
+
| classifier__n_estimators | 10 |
|
205 |
+
| classifier__n_jobs | -1 |
|
206 |
+
| classifier__num_parallel_tree | |
|
207 |
+
| classifier__random_state | 2024 |
|
208 |
+
| classifier__reg_alpha | |
|
209 |
+
| classifier__reg_lambda | |
|
210 |
+
| classifier__sampling_method | |
|
211 |
+
| classifier__scale_pos_weight | |
|
212 |
+
| classifier__subsample | |
|
213 |
+
| classifier__tree_method | |
|
214 |
+
| classifier__validate_parameters | |
|
215 |
+
| classifier__verbosity | |
|
216 |
+
| classifier__verbose | 0 |
|
217 |
+
|
218 |
+
</details>
|
219 |
+
|
220 |
+
### Model Plot
|
221 |
+
|
222 |
+
<style>#sk-container-id-14 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
|
223 |
+
}#sk-container-id-14 {color: var(--sklearn-color-text);
|
224 |
+
}#sk-container-id-14 pre {padding: 0;
|
225 |
+
}#sk-container-id-14 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
|
226 |
+
}#sk-container-id-14 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
|
227 |
+
}#sk-container-id-14 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
|
228 |
+
}#sk-container-id-14 div.sk-text-repr-fallback {display: none;
|
229 |
+
}div.sk-parallel-item,
|
230 |
+
div.sk-serial,
|
231 |
+
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
|
232 |
+
}/* Parallel-specific style estimator block */#sk-container-id-14 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
|
233 |
+
}#sk-container-id-14 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
|
234 |
+
}#sk-container-id-14 div.sk-parallel-item {display: flex;flex-direction: column;
|
235 |
+
}#sk-container-id-14 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
|
236 |
+
}#sk-container-id-14 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
|
237 |
+
}#sk-container-id-14 div.sk-parallel-item:only-child::after {width: 0;
|
238 |
+
}/* Serial-specific style estimator block */#sk-container-id-14 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
|
239 |
+
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
|
240 |
+
clickable and can be expanded/collapsed.
|
241 |
+
- Pipeline and ColumnTransformer use this feature and define the default style
|
242 |
+
- Estimators will overwrite some part of the style using the `sk-estimator` class
|
243 |
+
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-14 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
|
244 |
+
}/* Toggleable label */
|
245 |
+
#sk-container-id-14 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
|
246 |
+
}#sk-container-id-14 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
|
247 |
+
}#sk-container-id-14 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
|
248 |
+
}/* Toggleable content - dropdown */#sk-container-id-14 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
249 |
+
}#sk-container-id-14 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
250 |
+
}#sk-container-id-14 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
251 |
+
}#sk-container-id-14 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
|
252 |
+
}#sk-container-id-14 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
|
253 |
+
}#sk-container-id-14 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
|
254 |
+
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-14 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
255 |
+
}#sk-container-id-14 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
|
256 |
+
}/* Estimator-specific style *//* Colorize estimator box */
|
257 |
+
#sk-container-id-14 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
258 |
+
}#sk-container-id-14 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
259 |
+
}#sk-container-id-14 div.sk-label label.sk-toggleable__label,
|
260 |
+
#sk-container-id-14 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
|
261 |
+
}/* On hover, darken the color of the background */
|
262 |
+
#sk-container-id-14 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
263 |
+
}/* Label box, darken color on hover, fitted */
|
264 |
+
#sk-container-id-14 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
|
265 |
+
}/* Estimator label */#sk-container-id-14 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
|
266 |
+
}#sk-container-id-14 div.sk-label-container {text-align: center;
|
267 |
+
}/* Estimator-specific */
|
268 |
+
#sk-container-id-14 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
269 |
+
}#sk-container-id-14 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
270 |
+
}/* on hover */
|
271 |
+
#sk-container-id-14 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
272 |
+
}#sk-container-id-14 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
273 |
+
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
|
274 |
+
a:link.sk-estimator-doc-link,
|
275 |
+
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
|
276 |
+
}.sk-estimator-doc-link.fitted,
|
277 |
+
a:link.sk-estimator-doc-link.fitted,
|
278 |
+
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
279 |
+
}/* On hover */
|
280 |
+
div.sk-estimator:hover .sk-estimator-doc-link:hover,
|
281 |
+
.sk-estimator-doc-link:hover,
|
282 |
+
div.sk-label-container:hover .sk-estimator-doc-link:hover,
|
283 |
+
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
284 |
+
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
|
285 |
+
.sk-estimator-doc-link.fitted:hover,
|
286 |
+
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
287 |
+
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
288 |
+
}/* Span, style for the box shown on hovering the info icon */
|
289 |
+
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
|
290 |
+
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
|
291 |
+
}.sk-estimator-doc-link:hover span {display: block;
|
292 |
+
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-14 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
293 |
+
}#sk-container-id-14 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
294 |
+
}/* On hover */
|
295 |
+
#sk-container-id-14 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
296 |
+
}#sk-container-id-14 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
|
297 |
+
}
|
298 |
+
</style><div id="sk-container-id-14" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...feature_types=None, gamma=None, grow_policy=None,importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=20, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-170" type="checkbox" ><label for="sk-estimator-id-170" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...feature_types=None, gamma=None, grow_policy=None,importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=20, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-171" type="checkbox" ><label for="sk-estimator-id-171" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> preprocessor: ColumnTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for preprocessor: ColumnTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler', RobustScaler())]),['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2','age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',FunctionTransformer(func=<function as_...handle_unknown='infrequent_if_exist',sparse_output=False))]),['insurance']),('feature_creation_pipeline',Pipeline(steps=[('feature_creation',FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)),('imputer',SimpleImputer(strategy='most_frequent')),('encoder',OneHotEncoder(drop='first',handle_unknown='infrequent_if_exist',sparse_output=False))]),['age'])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-172" type="checkbox" ><label for="sk-estimator-id-172" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">numerical_pipeline</label><div class="sk-toggleable__content fitted"><pre>['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-173" type="checkbox" ><label for="sk-estimator-id-173" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=<ufunc 'log1p'>)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-174" type="checkbox" ><label for="sk-estimator-id-174" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='median')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-175" type="checkbox" ><label for="sk-estimator-id-175" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> RobustScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.RobustScaler.html">?<span>Documentation for RobustScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>RobustScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-176" type="checkbox" ><label for="sk-estimator-id-176" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">categorical_pipeline</label><div class="sk-toggleable__content fitted"><pre>['insurance']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-177" type="checkbox" ><label for="sk-estimator-id-177" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=<function as_category at 0x000001E7F1450680>)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-178" type="checkbox" ><label for="sk-estimator-id-178" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='most_frequent')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-179" type="checkbox" ><label for="sk-estimator-id-179" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',sparse_output=False)</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-180" type="checkbox" ><label for="sk-estimator-id-180" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">feature_creation_pipeline</label><div class="sk-toggleable__content fitted"><pre>['age']</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-181" type="checkbox" ><label for="sk-estimator-id-181" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> FunctionTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.FunctionTransformer.html">?<span>Documentation for FunctionTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>FunctionTransformer(func=<function feature_creation at 0x000001E7F14514E0>)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-182" type="checkbox" ><label for="sk-estimator-id-182" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='most_frequent')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-183" type="checkbox" ><label for="sk-estimator-id-183" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> OneHotEncoder<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',sparse_output=False)</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-184" type="checkbox" ><label for="sk-estimator-id-184" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SelectKBest<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.feature_selection.SelectKBest.html">?<span>Documentation for SelectKBest</span></a></label><div class="sk-toggleable__content fitted"><pre>SelectKBest(k='all',score_func=<function mutual_info_classif at 0x000001E7EDA4E480>)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-185" type="checkbox" ><label for="sk-estimator-id-185" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=20, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...)</pre></div> </div></div></div></div></div></div>
|
299 |
+
|
300 |
+
## Evaluation Results
|
301 |
+
|
302 |
+
[More Information Needed]
|
303 |
+
|
304 |
+
# How to Get Started with the Model
|
305 |
+
|
306 |
+
[More Information Needed]
|
307 |
+
|
308 |
+
# Model Card Authors
|
309 |
+
|
310 |
+
This model card is written by following authors:
|
311 |
+
|
312 |
+
[More Information Needed]
|
313 |
+
|
314 |
+
# Model Card Contact
|
315 |
+
|
316 |
+
You can contact the model card authors through following channels:
|
317 |
+
[More Information Needed]
|
318 |
+
|
319 |
+
# Citation
|
320 |
+
|
321 |
+
Below you can find information related to citation.
|
322 |
+
|
323 |
+
**BibTeX:**
|
324 |
+
```
|
325 |
+
[More Information Needed]
|
326 |
+
```
|
327 |
+
|
328 |
+
# citation_bibtex
|
329 |
+
|
330 |
+
bibtex
|
331 |
+
@inproceedings{...,year={2024}}
|
332 |
+
|
333 |
+
# get_started_code
|
334 |
+
|
335 |
+
import joblib
|
336 |
+
clf = joblib.load(../models/XGBClassifier.joblib)
|
337 |
+
|
338 |
+
# model_card_authors
|
339 |
+
|
340 |
+
Gabriel Okundaye
|
341 |
+
|
342 |
+
# limitations
|
343 |
+
|
344 |
+
This model needs further feature engineering to improve the f1 weighted score. Collaborate on with me here [GitHub](https://github.com/D0nG4667/sepsis_prediction_full_stack)
|
345 |
+
|
346 |
+
# model_description
|
347 |
+
|
348 |
+
This is a XGBClassifier model trained on Sepsis dataset from this [kaggle dataset](https://www.kaggle.com/datasets/chaunguynnghunh/sepsis/data).
|
349 |
+
|
350 |
+
# roc_auc_curve
|
351 |
+
|
352 |
+
![roc_auc_curve](../models/huggingface/XGBClassifierROC_AUC_Curve_for_RandomForestClassifier_and_XGBClassifier_(F1-Weighted_Scores__0.778_and_0.777_respectively).webp)
|
353 |
+
|
354 |
+
# feature_importances
|
355 |
+
|
356 |
+
![feature_importances](../models/huggingface/XGBClassifierFeature_Importances-_XGBClassifier_(F1-Weighted_Scores__0.777).webp)
|
XGBClassifier.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec332cb84cb397dec64c51e51973d2c562b8b63e39b65598c713b1fd00d379c5
|
3 |
+
size 44802
|
config.json
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"id",
|
5 |
+
"prg",
|
6 |
+
"pl",
|
7 |
+
"pr",
|
8 |
+
"sk",
|
9 |
+
"ts",
|
10 |
+
"m11",
|
11 |
+
"bd2",
|
12 |
+
"age",
|
13 |
+
"insurance",
|
14 |
+
"sepsis"
|
15 |
+
],
|
16 |
+
"environment": [
|
17 |
+
"scikit-learn=1.5.0",
|
18 |
+
"imbalanced-learn=0.12.3"
|
19 |
+
],
|
20 |
+
"example_input": {
|
21 |
+
"age": [
|
22 |
+
50,
|
23 |
+
31,
|
24 |
+
32
|
25 |
+
],
|
26 |
+
"bd2": [
|
27 |
+
0.627,
|
28 |
+
0.351,
|
29 |
+
0.672
|
30 |
+
],
|
31 |
+
"id": [
|
32 |
+
"ICU200010",
|
33 |
+
"ICU200011",
|
34 |
+
"ICU200012"
|
35 |
+
],
|
36 |
+
"insurance": [
|
37 |
+
0,
|
38 |
+
0,
|
39 |
+
1
|
40 |
+
],
|
41 |
+
"m11": [
|
42 |
+
33.6,
|
43 |
+
26.6,
|
44 |
+
23.3
|
45 |
+
],
|
46 |
+
"pl": [
|
47 |
+
148,
|
48 |
+
85,
|
49 |
+
183
|
50 |
+
],
|
51 |
+
"pr": [
|
52 |
+
72,
|
53 |
+
66,
|
54 |
+
64
|
55 |
+
],
|
56 |
+
"prg": [
|
57 |
+
6,
|
58 |
+
1,
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"sepsis": [
|
62 |
+
"Positive",
|
63 |
+
"Negative",
|
64 |
+
"Positive"
|
65 |
+
],
|
66 |
+
"sk": [
|
67 |
+
35,
|
68 |
+
29,
|
69 |
+
0
|
70 |
+
],
|
71 |
+
"ts": [
|
72 |
+
0,
|
73 |
+
0,
|
74 |
+
0
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"model": {
|
78 |
+
"file": "XGBClassifier.joblib"
|
79 |
+
},
|
80 |
+
"model_format": "pickle",
|
81 |
+
"task": "tabular-classification"
|
82 |
+
}
|
83 |
+
}
|