--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: my_awesome_model results: [] --- # my_awesome_model This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2740 - Accuracy: 0.6975 - F1: 0.6768 - Precision: 0.6819 - Recall: 0.6975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 384 | 0.3141 | 0.6836 | 0.6113 | 0.6934 | 0.6836 | | 0.3433 | 2.0 | 768 | 0.2599 | 0.7148 | 0.6995 | 0.7028 | 0.7148 | | 0.2239 | 3.0 | 1152 | 0.2601 | 0.7018 | 0.7032 | 0.7067 | 0.7018 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1