File size: 6,964 Bytes
f4fecfc
 
 
 
 
c997970
 
 
 
 
f4fecfc
4e51374
f4fecfc
 
 
 
 
 
4e51374
f4fecfc
 
c997970
ec1bd1c
 
 
 
 
 
f4fecfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c997970
 
 
 
ec1bd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c997970
 
f4fecfc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---

license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2-classifier-aug
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-classifier-aug

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0269
- Accuracy: 0.7790
- Precision: 0.7971
- Recall: 0.7790
- F1: 0.7657
- Binary: 0.8453

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.19  | 50   | 4.2076          | 0.0512   | 0.0054    | 0.0512 | 0.0092 | 0.3245 |

| No log        | 0.38  | 100  | 3.9082          | 0.0566   | 0.0053    | 0.0566 | 0.0092 | 0.3364 |

| No log        | 0.58  | 150  | 3.7121          | 0.0809   | 0.0281    | 0.0809 | 0.0302 | 0.3553 |

| No log        | 0.77  | 200  | 3.5137          | 0.1671   | 0.0794    | 0.1671 | 0.0870 | 0.4164 |

| No log        | 0.96  | 250  | 3.3647          | 0.2049   | 0.1259    | 0.2049 | 0.1261 | 0.4429 |

| 3.9294        | 1.15  | 300  | 3.2045          | 0.2534   | 0.1676    | 0.2534 | 0.1635 | 0.4765 |

| 3.9294        | 1.34  | 350  | 3.0682          | 0.2695   | 0.1968    | 0.2695 | 0.1841 | 0.4879 |

| 3.9294        | 1.53  | 400  | 2.9211          | 0.3154   | 0.2301    | 0.3154 | 0.2250 | 0.5191 |

| 3.9294        | 1.73  | 450  | 2.7973          | 0.3720   | 0.2756    | 0.3720 | 0.2815 | 0.5615 |

| 3.9294        | 1.92  | 500  | 2.6856          | 0.4232   | 0.3382    | 0.4232 | 0.3413 | 0.5973 |

| 3.1851        | 2.11  | 550  | 2.5696          | 0.4582   | 0.4161    | 0.4582 | 0.3827 | 0.6208 |

| 3.1851        | 2.3   | 600  | 2.4666          | 0.4987   | 0.4339    | 0.4987 | 0.4215 | 0.6501 |

| 3.1851        | 2.49  | 650  | 2.3548          | 0.5202   | 0.4502    | 0.5202 | 0.4542 | 0.6633 |

| 3.1851        | 2.68  | 700  | 2.2498          | 0.5229   | 0.4593    | 0.5229 | 0.4574 | 0.6660 |

| 3.1851        | 2.88  | 750  | 2.1579          | 0.5660   | 0.5162    | 0.5660 | 0.4993 | 0.6962 |

| 2.7           | 3.07  | 800  | 2.0626          | 0.5903   | 0.5465    | 0.5903 | 0.5332 | 0.7143 |

| 2.7           | 3.26  | 850  | 1.9820          | 0.6092   | 0.5576    | 0.6092 | 0.5470 | 0.7264 |

| 2.7           | 3.45  | 900  | 1.9158          | 0.6011   | 0.5636    | 0.6011 | 0.5466 | 0.7208 |

| 2.7           | 3.64  | 950  | 1.8432          | 0.6092   | 0.5631    | 0.6092 | 0.5499 | 0.7264 |

| 2.7           | 3.84  | 1000 | 1.7732          | 0.6280   | 0.5956    | 0.6280 | 0.5816 | 0.7396 |

| 2.3404        | 4.03  | 1050 | 1.7214          | 0.6523   | 0.6167    | 0.6523 | 0.6000 | 0.7566 |

| 2.3404        | 4.22  | 1100 | 1.6562          | 0.6550   | 0.6312    | 0.6550 | 0.6114 | 0.7585 |

| 2.3404        | 4.41  | 1150 | 1.5909          | 0.6792   | 0.6402    | 0.6792 | 0.6301 | 0.7755 |

| 2.3404        | 4.6   | 1200 | 1.5455          | 0.6900   | 0.6806    | 0.6900 | 0.6534 | 0.7830 |

| 2.3404        | 4.79  | 1250 | 1.5123          | 0.6739   | 0.6415    | 0.6739 | 0.6330 | 0.7717 |

| 2.3404        | 4.99  | 1300 | 1.4662          | 0.7089   | 0.6954    | 0.7089 | 0.6741 | 0.7962 |

| 2.089         | 5.18  | 1350 | 1.4212          | 0.6981   | 0.6739    | 0.6981 | 0.6585 | 0.7887 |

| 2.089         | 5.37  | 1400 | 1.3848          | 0.7008   | 0.6700    | 0.7008 | 0.6572 | 0.7906 |

| 2.089         | 5.56  | 1450 | 1.3435          | 0.7305   | 0.7289    | 0.7305 | 0.7017 | 0.8113 |

| 2.089         | 5.75  | 1500 | 1.3324          | 0.7251   | 0.7331    | 0.7251 | 0.7008 | 0.8075 |

| 2.089         | 5.94  | 1550 | 1.3030          | 0.7116   | 0.7242    | 0.7116 | 0.6841 | 0.7981 |

| 1.8929        | 6.14  | 1600 | 1.2662          | 0.7358   | 0.7356    | 0.7358 | 0.7065 | 0.8151 |

| 1.8929        | 6.33  | 1650 | 1.2341          | 0.7332   | 0.7665    | 0.7332 | 0.7128 | 0.8132 |

| 1.8929        | 6.52  | 1700 | 1.2299          | 0.7224   | 0.7255    | 0.7224 | 0.6950 | 0.8057 |

| 1.8929        | 6.71  | 1750 | 1.1984          | 0.7574   | 0.7758    | 0.7574 | 0.7409 | 0.8302 |

| 1.8929        | 6.9   | 1800 | 1.1810          | 0.7547   | 0.7710    | 0.7547 | 0.7390 | 0.8283 |

| 1.7722        | 7.09  | 1850 | 1.1510          | 0.7763   | 0.7979    | 0.7763 | 0.7613 | 0.8434 |

| 1.7722        | 7.29  | 1900 | 1.1476          | 0.7466   | 0.7541    | 0.7466 | 0.7259 | 0.8226 |

| 1.7722        | 7.48  | 1950 | 1.1326          | 0.7601   | 0.7798    | 0.7601 | 0.7456 | 0.8321 |

| 1.7722        | 7.67  | 2000 | 1.1218          | 0.7655   | 0.7778    | 0.7655 | 0.7493 | 0.8358 |

| 1.7722        | 7.86  | 2050 | 1.0964          | 0.7736   | 0.7844    | 0.7736 | 0.7597 | 0.8415 |

| 1.6621        | 8.05  | 2100 | 1.0895          | 0.7682   | 0.7778    | 0.7682 | 0.7505 | 0.8377 |

| 1.6621        | 8.25  | 2150 | 1.0731          | 0.7682   | 0.7925    | 0.7682 | 0.7546 | 0.8377 |

| 1.6621        | 8.44  | 2200 | 1.0673          | 0.7628   | 0.7771    | 0.7628 | 0.7497 | 0.8340 |

| 1.6621        | 8.63  | 2250 | 1.0728          | 0.7682   | 0.7890    | 0.7682 | 0.7552 | 0.8377 |

| 1.6621        | 8.82  | 2300 | 1.0449          | 0.7898   | 0.8032    | 0.7898 | 0.7779 | 0.8528 |

| 1.6107        | 9.01  | 2350 | 1.0386          | 0.7871   | 0.8037    | 0.7871 | 0.7744 | 0.8509 |

| 1.6107        | 9.2   | 2400 | 1.0398          | 0.7763   | 0.7912    | 0.7763 | 0.7635 | 0.8434 |

| 1.6107        | 9.4   | 2450 | 1.0324          | 0.7844   | 0.8025    | 0.7844 | 0.7726 | 0.8491 |

| 1.6107        | 9.59  | 2500 | 1.0323          | 0.7790   | 0.8006    | 0.7790 | 0.7651 | 0.8453 |

| 1.6107        | 9.78  | 2550 | 1.0274          | 0.7790   | 0.7980    | 0.7790 | 0.7648 | 0.8453 |

| 1.6107        | 9.97  | 2600 | 1.0269          | 0.7790   | 0.7971    | 0.7790 | 0.7657 | 0.8453 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1