File size: 6,964 Bytes
f4fecfc
 
 
 
 
c997970
 
 
 
 
f4fecfc
4e51374
f4fecfc
 
 
 
 
 
4e51374
f4fecfc
 
c997970
02e87ec
 
 
 
 
 
f4fecfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c997970
 
 
 
02e87ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c997970
 
f4fecfc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---

license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2-classifier-aug
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-classifier-aug

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0124
- Accuracy: 0.7574
- Precision: 0.7773
- Recall: 0.7574
- F1: 0.7429
- Binary: 0.8286

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- gradient_accumulation_steps: 4

- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Binary |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|

| No log        | 0.19  | 50   | 4.2519          | 0.0566   | 0.0051    | 0.0566 | 0.0089 | 0.3305 |

| No log        | 0.38  | 100  | 3.9645          | 0.0539   | 0.0068    | 0.0539 | 0.0107 | 0.3321 |

| No log        | 0.58  | 150  | 3.7338          | 0.1105   | 0.0576    | 0.1105 | 0.0536 | 0.3717 |

| No log        | 0.77  | 200  | 3.5648          | 0.1617   | 0.0751    | 0.1617 | 0.0846 | 0.4084 |

| No log        | 0.96  | 250  | 3.4031          | 0.2183   | 0.1101    | 0.2183 | 0.1268 | 0.4488 |

| 3.9542        | 1.15  | 300  | 3.2478          | 0.2102   | 0.1080    | 0.2102 | 0.1281 | 0.4450 |

| 3.9542        | 1.34  | 350  | 3.0971          | 0.2992   | 0.1963    | 0.2992 | 0.2044 | 0.5081 |

| 3.9542        | 1.53  | 400  | 2.9647          | 0.2992   | 0.2154    | 0.2992 | 0.2194 | 0.5100 |

| 3.9542        | 1.73  | 450  | 2.8175          | 0.3774   | 0.3235    | 0.3774 | 0.3129 | 0.5628 |

| 3.9542        | 1.92  | 500  | 2.6989          | 0.4528   | 0.3689    | 0.4528 | 0.3734 | 0.6129 |

| 3.1802        | 2.11  | 550  | 2.5825          | 0.4798   | 0.4392    | 0.4798 | 0.4132 | 0.6345 |

| 3.1802        | 2.3   | 600  | 2.4777          | 0.4960   | 0.4381    | 0.4960 | 0.4257 | 0.6458 |

| 3.1802        | 2.49  | 650  | 2.3896          | 0.5067   | 0.4835    | 0.5067 | 0.4514 | 0.6534 |

| 3.1802        | 2.68  | 700  | 2.2850          | 0.5553   | 0.5319    | 0.5553 | 0.5060 | 0.6873 |

| 3.1802        | 2.88  | 750  | 2.1647          | 0.5660   | 0.5312    | 0.5660 | 0.5136 | 0.6938 |

| 2.6685        | 3.07  | 800  | 2.0787          | 0.5660   | 0.5682    | 0.5660 | 0.5299 | 0.6949 |

| 2.6685        | 3.26  | 850  | 1.9976          | 0.5849   | 0.5871    | 0.5849 | 0.5490 | 0.7078 |

| 2.6685        | 3.45  | 900  | 1.9318          | 0.6119   | 0.5932    | 0.6119 | 0.5737 | 0.7278 |

| 2.6685        | 3.64  | 950  | 1.8600          | 0.6065   | 0.5880    | 0.6065 | 0.5629 | 0.7240 |

| 2.6685        | 3.84  | 1000 | 1.7730          | 0.6496   | 0.6337    | 0.6496 | 0.6135 | 0.7550 |

| 2.2863        | 4.03  | 1050 | 1.7003          | 0.6765   | 0.6607    | 0.6765 | 0.6427 | 0.7720 |

| 2.2863        | 4.22  | 1100 | 1.6632          | 0.6658   | 0.6876    | 0.6658 | 0.6364 | 0.7655 |

| 2.2863        | 4.41  | 1150 | 1.6066          | 0.6739   | 0.6552    | 0.6739 | 0.6371 | 0.7712 |

| 2.2863        | 4.6   | 1200 | 1.5495          | 0.6900   | 0.6841    | 0.6900 | 0.6616 | 0.7825 |

| 2.2863        | 4.79  | 1250 | 1.5232          | 0.6631   | 0.6333    | 0.6631 | 0.6295 | 0.7644 |

| 2.2863        | 4.99  | 1300 | 1.4847          | 0.6900   | 0.6985    | 0.6900 | 0.6668 | 0.7825 |

| 2.0189        | 5.18  | 1350 | 1.4253          | 0.6927   | 0.6710    | 0.6927 | 0.6586 | 0.7833 |

| 2.0189        | 5.37  | 1400 | 1.4005          | 0.7008   | 0.6947    | 0.7008 | 0.6729 | 0.7900 |

| 2.0189        | 5.56  | 1450 | 1.3482          | 0.7143   | 0.7217    | 0.7143 | 0.6926 | 0.7984 |

| 2.0189        | 5.75  | 1500 | 1.3130          | 0.7089   | 0.7150    | 0.7089 | 0.6866 | 0.7957 |

| 2.0189        | 5.94  | 1550 | 1.2733          | 0.7332   | 0.7519    | 0.7332 | 0.7117 | 0.8127 |

| 1.8234        | 6.14  | 1600 | 1.2586          | 0.7278   | 0.7585    | 0.7278 | 0.7101 | 0.8089 |

| 1.8234        | 6.33  | 1650 | 1.2376          | 0.7251   | 0.7509    | 0.7251 | 0.7067 | 0.8059 |

| 1.8234        | 6.52  | 1700 | 1.2169          | 0.7251   | 0.7454    | 0.7251 | 0.7070 | 0.8059 |

| 1.8234        | 6.71  | 1750 | 1.2007          | 0.7358   | 0.7476    | 0.7358 | 0.7162 | 0.8135 |

| 1.8234        | 6.9   | 1800 | 1.1814          | 0.7278   | 0.7410    | 0.7278 | 0.7069 | 0.8078 |

| 1.6833        | 7.09  | 1850 | 1.1559          | 0.7358   | 0.7627    | 0.7358 | 0.7184 | 0.8135 |

| 1.6833        | 7.29  | 1900 | 1.1305          | 0.7574   | 0.7876    | 0.7574 | 0.7432 | 0.8286 |

| 1.6833        | 7.48  | 1950 | 1.1150          | 0.7385   | 0.7671    | 0.7385 | 0.7259 | 0.8173 |

| 1.6833        | 7.67  | 2000 | 1.1024          | 0.7412   | 0.7925    | 0.7412 | 0.7269 | 0.8173 |

| 1.6833        | 7.86  | 2050 | 1.0954          | 0.7358   | 0.7272    | 0.7358 | 0.7111 | 0.8135 |

| 1.5919        | 8.05  | 2100 | 1.0778          | 0.7547   | 0.7598    | 0.7547 | 0.7342 | 0.8267 |

| 1.5919        | 8.25  | 2150 | 1.0713          | 0.7385   | 0.7462    | 0.7385 | 0.7192 | 0.8164 |

| 1.5919        | 8.44  | 2200 | 1.0495          | 0.7574   | 0.7719    | 0.7574 | 0.7405 | 0.8286 |

| 1.5919        | 8.63  | 2250 | 1.0371          | 0.7574   | 0.7677    | 0.7574 | 0.7400 | 0.8296 |

| 1.5919        | 8.82  | 2300 | 1.0452          | 0.7655   | 0.7876    | 0.7655 | 0.7540 | 0.8353 |

| 1.5254        | 9.01  | 2350 | 1.0313          | 0.7601   | 0.7781    | 0.7601 | 0.7450 | 0.8315 |

| 1.5254        | 9.2   | 2400 | 1.0243          | 0.7628   | 0.7862    | 0.7628 | 0.7494 | 0.8334 |

| 1.5254        | 9.4   | 2450 | 1.0192          | 0.7520   | 0.7697    | 0.7520 | 0.7348 | 0.8259 |

| 1.5254        | 9.59  | 2500 | 1.0140          | 0.7628   | 0.7859    | 0.7628 | 0.7490 | 0.8323 |

| 1.5254        | 9.78  | 2550 | 1.0121          | 0.7601   | 0.7774    | 0.7601 | 0.7453 | 0.8305 |

| 1.5254        | 9.97  | 2600 | 1.0124          | 0.7574   | 0.7773    | 0.7574 | 0.7429 | 0.8286 |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.3.0

- Datasets 2.19.1

- Tokenizers 0.15.1