End of training
Browse files- README.md +18 -4
- all_results.json +14 -0
- eval_results.json +9 -0
- runs/May19_18-02-06_DITEC2014063010/events.out.tfevents.1720769213.DITEC2014063010.1572992.1 +3 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
README.md
CHANGED
@@ -3,11 +3,25 @@ license: apache-2.0
|
|
3 |
base_model: openai/whisper-medium
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- wer
|
8 |
model-index:
|
9 |
- name: whisper-medium-pt-3000h
|
10 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -15,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# whisper-medium-pt-3000h
|
17 |
|
18 |
-
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Wer: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
3 |
base_model: openai/whisper-medium
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
|
8 |
metrics:
|
9 |
- wer
|
10 |
model-index:
|
11 |
- name: whisper-medium-pt-3000h
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
|
18 |
+
default
|
19 |
+
type: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.11007210455159983
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# whisper-medium-pt-3000h
|
31 |
|
32 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.9306
|
35 |
+
- Wer: 0.1101
|
36 |
|
37 |
## Model description
|
38 |
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_loss": 0.9306021928787231,
|
4 |
+
"eval_runtime": 6063.5991,
|
5 |
+
"eval_samples": 9467,
|
6 |
+
"eval_samples_per_second": 1.561,
|
7 |
+
"eval_steps_per_second": 0.195,
|
8 |
+
"eval_wer": 0.11007210455159983,
|
9 |
+
"train_loss": 0.1179144298298952,
|
10 |
+
"train_runtime": 4583335.8647,
|
11 |
+
"train_samples": 813653,
|
12 |
+
"train_samples_per_second": 1.775,
|
13 |
+
"train_steps_per_second": 0.222
|
14 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"eval_loss": 0.9306021928787231,
|
4 |
+
"eval_runtime": 6063.5991,
|
5 |
+
"eval_samples": 9467,
|
6 |
+
"eval_samples_per_second": 1.561,
|
7 |
+
"eval_steps_per_second": 0.195,
|
8 |
+
"eval_wer": 0.11007210455159983
|
9 |
+
}
|
runs/May19_18-02-06_DITEC2014063010/events.out.tfevents.1720769213.DITEC2014063010.1572992.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13064e52a0c4ed40171e471b9c2d2dde34b5e46b69a733e14ea680f2306f120e
|
3 |
+
size 412
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 10.0,
|
3 |
+
"train_loss": 0.1179144298298952,
|
4 |
+
"train_runtime": 4583335.8647,
|
5 |
+
"train_samples": 813653,
|
6 |
+
"train_samples_per_second": 1.775,
|
7 |
+
"train_steps_per_second": 0.222
|
8 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|