File size: 1,985 Bytes
e57e063
 
 
 
 
 
7b2d435
e57e063
 
 
 
 
 
 
 
 
 
 
 
acdc05a
 
e57e063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acdc05a
 
 
 
 
 
 
 
 
 
e57e063
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
base_model: distilbert-base-uncased
model-index:
- name: media-bias-ukraine-dataset-all-minus-ukraine
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# media-bias-ukraine-dataset-all-minus-ukraine

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4742
- F1: 0.2408

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0979        | 1.0   | 138  | 2.1940          | 0.1065 |
| 0.1215        | 2.0   | 276  | 2.3970          | 0.2096 |
| 1.1233        | 3.0   | 414  | 2.0863          | 0.1919 |
| 0.0041        | 4.0   | 552  | 2.6282          | 0.1823 |
| 0.0141        | 5.0   | 690  | 2.9322          | 0.1994 |
| 0.0348        | 6.0   | 828  | 2.4742          | 0.2408 |
| 0.0018        | 7.0   | 966  | 2.8876          | 0.1986 |
| 0.0014        | 8.0   | 1104 | 3.1422          | 0.1878 |
| 0.0044        | 9.0   | 1242 | 3.0119          | 0.2142 |
| 0.5136        | 10.0  | 1380 | 2.9972          | 0.2082 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2