format37 commited on
Commit
f23e9d6
1 Parent(s): 0b67df1

Upload PPO MountainCar-v0 trained agent

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-Mlp.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b24c946addc8b8544e1e5041aa1aaaae32ca41f6410896e9dabd529fc70d1b3
3
+ size 137362
PPO-Mlp/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-Mlp/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d559b1790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d559b1820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d559b18b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d559b1940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d559b19d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d559b1a60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d559b1af0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d559b1b80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d559b1c10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d559b1ca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d559b1d30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f2d559b0e40>"
20
+ },
21
+ "verbose": 0,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 2
29
+ ],
30
+ "low": "[-1.2 -0.07]",
31
+ "high": "[0.6 0.07]",
32
+ "bounded_below": "[ True True]",
33
+ "bounded_above": "[ True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgC00Yh4FUZYPnhmdFMBw0Hy7MHjQJXrphorygOOWRtKrQiP07gQD9+cn/8l2vN+9mMYlUGgMx+SWuatkrue47d3G8rE1Hn0upMcFgVo1D3DQq7pkCbhCAU0HcW0Um4vo7pyOWudnSpkKYwFbeW+KLl+h9Ag3JAzVD2IDa3QKmkpnYXwaiHPzJIYvEN4wR+HuUrbVeWkHF8YRBs/7Opg6CLdyPp7/dQ4f8LaudYhLV1AvwWtBes9cI8S2P1XjNanjNM+NRBYYwTxQZQ837vp/KI8esMSfIpJBaONWQGGlcGg4/pTbZtFtXGU5wtT5IWMr1DGM5kvuSejYtt17buCGqjBM1F2pTF7DFHZW4pz83WXwEsu3DxESVXyYg3P6YFWExwXTWTKZO5zlcLKbmMocbB7lGAc8e2CgB5oULVHrjG0+ZNPm1TZtIUlhVqQ7LO18i9lLhwigWOTXVefbtJNVtJE1OJtFNGmBgi04PaUwnvOmIZVrGeI9eGtunqKTjZvAcG8a0lMFg0hCZ1AsQlNJ625tppwswWIQea4OM9BYzSceUMEFK3VmPStPjkw1hn46PZYU7r6ULZGrrVGksXuWJXKfWU0lwav3MOF77qnZrxJ8TOsj+dr+ovIQ09H3UXpy9AdqvuhxkuWQRDrdePuJ9aMxSJjPd+VnVBRxGF8/09bvVAQFZpP+GV0VexQ6qvR18nQlBP65AgMmiRtJ3jaKKnieCq2B/802yf6UXhnZJ5YPOa49iIbHupphzO6mXixOaoZeoN46xcXfTNmmN/opDm9gmSs5OWPP5kQO0607rltgfUH7VuEU0BQ9XeiUGOacDG1t72lKM0n+Ar/6tUcCKwZhqjnzf0mpvcNXX1AaT8Stq8C3cHgXxGqJmUnr3cLIiMeCdqOHKitpwzsSlNqZOsBzSHBS+rWCCA/77qEC+8LdwfV2h85tbpCMYeMswtl0bmjn+m1EtTxRnxatmOmxhT+g0W5BmOZVwXdj5LUiMQcb/pYRILcSfk7mUZP46qGLF/Q7sqFc/rzGTwP7yL3uDBTlvLdFAJhzbl/yieHIz16Llk6LE0GEf+z7Y9E3HclG6ixlhNP3laPbSKeLY9p10GsC9V9XDNOPf1UuuEHvX2eYOLCsATNppzra3KI+ONjU46nXHPaaVxiWev8VcDzFFaK5L/X6/0CLokox6VLlUTVtZxlbt8xsoKCseE7sPqouvXy7pO2cqupeAPgUYXluXHcH5NFwsqih31cSIUiAKVdmg7xXP1/UlNWc6/JdAmNu5loDNFb7vQ5Bt+kq6NxQ0d62Il9Hf/zHKYi4xG+x3Uvbs27l8cSUwXOB6H8eVr6VGrq3T/gykNz38W8W/Nmg04bLsCxCeqUagKGFMZtsyEbZj4z1M6yDlO+jatUacr9FKsXMrE8r6X5QfiMYEYVj/u9dXlbEGh5zqEwuhIuRhbztRpW6pcbUM6+J3Sq15C+11yRrWLDbo1uADmB71P5ehf5NkM8vI19DdD7hjd0j0UXCe4TSubTI6+olL/+0P4BxrR8LTzZlrsgpvKhpT9Hkh0H/wSlHHbQmCj2D7isuU/0fXBNBfnCcExBp748NhHbWsB5H7g6fUcSFOHrpioHPv85vjcocxrKA5mj1q0dzL66kiscb+fRbd1s2dnekyhb8jIFvJVpPUh5FHl+7iJZMrZ9hKrtFqNt7CtsTSou+AkrAoXpzyfPoVFFqPmBIWZas7VQTj0IXK/+9zgZ8hEy52HvEfSRTzeN1fGoZF4n5LrrqTrmy32gAng7HIMIpN+UkNfckBDJy3dh7CPWxh4WkQoDCdIt4lTX8X/q0+AIM+YhV0irmY92ZDborvCHCuxGMa1ZAnssxKs2HZn1tCLTnzCSnhRyq6H9MLWQfJeJJ+H+xiHUIzViGL5srOY00fxjBU5MS4b4zgLBzOl5j1BHEuUj+j0b4TwuZvBMSqY8u0bv1FVSlwUzpPpLKu3B+x1B3++EPSUNJ2IdQxZ/OJpeR4QU4RBeNR7T02cXYiz1PhhqJxe1XSK9v8CnQpgSAlOspUq/rugWCb/WZGHjNKXT2RyRj9NBijK3fuGuCIV4wpX5oLxyAJ0/BfypI/LywNjWqNp15jgMUeN3CkNkH8yC7PNXvySqjxnyOg8Y9z3aF4k1DtCFC3DB3SVSQhtxRx0IHRB0RUNr/yB0JNGvca5VhiWHHG0ZzqgkkJz+7cT7Ytfgel4b+5DuLZOqRudhpt06jFFmsPBk5TW79GAPfAcUOAJdQGKYq2NMIQtiN0HBIvknqMp8RzD3W9BpKAAl4BuKbpa8/g91G4QyGscepwW6p9qLk1fTJyydkgpCs/7jfaCn2NvhZ8zZEn+PSDlvjGQIR3HEzToaepduCpfTNpvPNwUVVBIo2zEjB43t4gBjPt4A1Mbf4f3xykNDBuO4F6rgdLsd/VIlaxsJF4a0K+U5GlZVPa7rrCp/vSfUDH9RU6s+LSBKnSBzzHVEQ4NgGzVDlrMT8th6U3dXohvBEqE48zP0SHyPWc3DCuMhKS+omLUqxieRug+R2TLa873JToQeXvLVfkWnyNsM5FL29yWpRIAv7W+UzGWvHWgKN79L1Nmk8waLu1KD6+cXbzoAJjqhe5MBw8SZRDjwGcNCs5I64o7LHwU4YwZUmeAYJKKPmW3WhCzWUg8PJiakN+IaPDIc5hxWNMS02rafbPo1PVAiLCCnPOkuVtdDU8ofhFj2zKIfHvU1aPqzQGhQSSKehSr5HXZGmDBV91VDe60BZ3d/oo5dUw13XgL2LwYmehi/tD5xxMcVocUoM2uX0bs/I8f4qtP+WkKjLDuCdlG0UUT5LPa1oFIIeQhJribq5Wn3ucN70sWK9yjBj+9FGXPVOxDtnp/2Inw9oURusy+3GWy7Q/LpmlsAujZfc5FmM79SkGP/7zJV5u4YqOyZHDSNC4vPoosRi1RdOkUqMp/9yVnOU1X4JCoWRmB137iNHP91v65YGmGlViOoJ4mNnn8JszSBHRXl+C0AOvkyk49T3lSMlohWaGioCQBNudK3g6slhYbiMIBmWA1fFqrrZgTsgh5Uhcqc5VcOT54PlLpMob7Qr36K4woybRDJkVoL4ORSqgSWBRcgj54NubMs1LfV/zTUmn2rc+SyZ7689WK1Oe3pTVKovkSmRjgP/hRERQ+H0dg4v1s0N6TB+ka8q82GcbUDsy5EB5y2RYMetomy9/yIYWpsjgdlQoDrQe8khsbcH2V4sCZnk3Ugg6k5h5FW9vZTUYyROat/f1rgRfNWyL0xUF73BGav08gRdDp/mv9P7Vi+vS4MGmdKmDvmcK4wqlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 3,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 5001216,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 2029745623,
49
+ "action_noise": null,
50
+ "start_time": 1665594844.6827207,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "./logs2/",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAapzL5VGxs9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00024320000000011,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNgAAAAAACMAWyUS5uMAXSUR0DErGeuaF23dX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DErH3lZHNHdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErJSaoddWdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0DErKxKJ2t/dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0DErMO6oVEedX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DErNmnbZezdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0DErPUEzO5bdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0DErQzrTpgUdX2UKGgGR8BogAAAAAAAaAdLxGgIR0DErSmCXhOydX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DErUHG2kSFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEriPO2RaHdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErjk2xY7rdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0DErk+2E0zkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0DErmjVawEAdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErn9/QSi/dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErpWys0YTdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0DErq2svIwNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DErsuJcgQpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DErujwlSjydX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErv+Fev6kdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErxY86mwadX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEryu03Ov/dX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEsAxSBK+SdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEsCIVXV9XdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsDd1ZDArdX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEsEz1uivgdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsGO4ZuQ7dX2UKGgGR8BoYAAAAAAAaAdLw2gIR0DEsIBP2wmmdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DEsJaAjIJadX2UKGgGR8BnIAAAAAAAaAdLuWgIR0DEsLFNxlxwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsMe5DqnndX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsN384xUOdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsPRKWcBmdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsQpD/lySdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEsSeC2+fzdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEsgep4rz5dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsh1kQPI5dX2UKGgGR8BkQAAAAAAAaAdLomgIR0DEsjVUVBUrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEslJfICEIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEsnCTQmeEdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsoZsGgSOdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEspvhESdwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0DEsrB3Roh7dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEssYmG/N8dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEstzdvbXZdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DEsvQToMa1dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEswkVQAMldX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEsx6c5Ke1dX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DEs/TN+so2dX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DEtAti8WbgdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEtB/apPykdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEtDRbSqlxdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEtEj83uNQdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0DEtGDV2A5JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEtH5iobXIdX2UKGgGR8BngAAAAAAAaAdLvGgIR0DEtJl/rjYJdX2UKGgGR8BngAAAAAAAaAdLvGgIR0DEtLUi8nNQdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtMpR64UfdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEtN8zqKP5dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEtPXDcdo4dX2UKGgGR8BjQAAAAAAAaAdLmmgIR0DEtQwSDh99dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtdXT7VJ+dX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEten+CK77dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtf5AD7qIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEthnJeVs2dX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEti7aIvaldX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEtkSCJ40NdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEtlkfYBeYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0DEtm/KhcqwdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DEtobM5fdAdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtptTHbRGdX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEtrAp6QeWdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEtsQyEcsEdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEttkCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEt7OUhV2idX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEt8jPD50sdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEt95Rjz7NdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0DEt/bWwu/UdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuAyXF98adX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuCHvH93sdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEuDdeQdS3dX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuEz0HyEtdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEuGK4x1xLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEuH4ZydWidX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEuJImzBykdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEuKfg75mAdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEuL0aXKKYdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0DEuZFfqoqDdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEuaaIP9UCdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0DEucDEFW4mdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0DEudpcxCY1dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEufECgbqAdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0DEugZVsDW9dX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEuhuvllshdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0DEui+9pRGddX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEukQYUFjedX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEullv/BFedX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEum+1SflIdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEuoRsuWa+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEuqFv2oNvdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 24420,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-Mlp/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c5280e05a9491f59c0298a4832d2b55dda750393491eff94688f0505f12ab5
3
+ size 79239
PPO-Mlp/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63fea7aaa1f6afae04c10c293a8bbe43415ebadcb2a973a1fff57d611878956c
3
+ size 40731
PPO-Mlp/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-Mlp/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-50-generic-x86_64-with-glibc2.31 #56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022
2
+ Python: 3.9.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.8.1
5
+ GPU Enabled: True
6
+ Numpy: 1.21.5
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -151.80 +/- 16.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d559b1790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d559b1820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d559b18b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d559b1940>", "_build": "<function ActorCriticPolicy._build at 0x7f2d559b19d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d559b1a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d559b1af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d559b1b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d559b1c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d559b1ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d559b1d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2d559b0e40>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgC00Yh4FUZYPnhmdFMBw0Hy7MHjQJXrphorygOOWRtKrQiP07gQD9+cn/8l2vN+9mMYlUGgMx+SWuatkrue47d3G8rE1Hn0upMcFgVo1D3DQq7pkCbhCAU0HcW0Um4vo7pyOWudnSpkKYwFbeW+KLl+h9Ag3JAzVD2IDa3QKmkpnYXwaiHPzJIYvEN4wR+HuUrbVeWkHF8YRBs/7Opg6CLdyPp7/dQ4f8LaudYhLV1AvwWtBes9cI8S2P1XjNanjNM+NRBYYwTxQZQ837vp/KI8esMSfIpJBaONWQGGlcGg4/pTbZtFtXGU5wtT5IWMr1DGM5kvuSejYtt17buCGqjBM1F2pTF7DFHZW4pz83WXwEsu3DxESVXyYg3P6YFWExwXTWTKZO5zlcLKbmMocbB7lGAc8e2CgB5oULVHrjG0+ZNPm1TZtIUlhVqQ7LO18i9lLhwigWOTXVefbtJNVtJE1OJtFNGmBgi04PaUwnvOmIZVrGeI9eGtunqKTjZvAcG8a0lMFg0hCZ1AsQlNJ625tppwswWIQea4OM9BYzSceUMEFK3VmPStPjkw1hn46PZYU7r6ULZGrrVGksXuWJXKfWU0lwav3MOF77qnZrxJ8TOsj+dr+ovIQ09H3UXpy9AdqvuhxkuWQRDrdePuJ9aMxSJjPd+VnVBRxGF8/09bvVAQFZpP+GV0VexQ6qvR18nQlBP65AgMmiRtJ3jaKKnieCq2B/802yf6UXhnZJ5YPOa49iIbHupphzO6mXixOaoZeoN46xcXfTNmmN/opDm9gmSs5OWPP5kQO0607rltgfUH7VuEU0BQ9XeiUGOacDG1t72lKM0n+Ar/6tUcCKwZhqjnzf0mpvcNXX1AaT8Stq8C3cHgXxGqJmUnr3cLIiMeCdqOHKitpwzsSlNqZOsBzSHBS+rWCCA/77qEC+8LdwfV2h85tbpCMYeMswtl0bmjn+m1EtTxRnxatmOmxhT+g0W5BmOZVwXdj5LUiMQcb/pYRILcSfk7mUZP46qGLF/Q7sqFc/rzGTwP7yL3uDBTlvLdFAJhzbl/yieHIz16Llk6LE0GEf+z7Y9E3HclG6ixlhNP3laPbSKeLY9p10GsC9V9XDNOPf1UuuEHvX2eYOLCsATNppzra3KI+ONjU46nXHPaaVxiWev8VcDzFFaK5L/X6/0CLokox6VLlUTVtZxlbt8xsoKCseE7sPqouvXy7pO2cqupeAPgUYXluXHcH5NFwsqih31cSIUiAKVdmg7xXP1/UlNWc6/JdAmNu5loDNFb7vQ5Bt+kq6NxQ0d62Il9Hf/zHKYi4xG+x3Uvbs27l8cSUwXOB6H8eVr6VGrq3T/gykNz38W8W/Nmg04bLsCxCeqUagKGFMZtsyEbZj4z1M6yDlO+jatUacr9FKsXMrE8r6X5QfiMYEYVj/u9dXlbEGh5zqEwuhIuRhbztRpW6pcbUM6+J3Sq15C+11yRrWLDbo1uADmB71P5ehf5NkM8vI19DdD7hjd0j0UXCe4TSubTI6+olL/+0P4BxrR8LTzZlrsgpvKhpT9Hkh0H/wSlHHbQmCj2D7isuU/0fXBNBfnCcExBp748NhHbWsB5H7g6fUcSFOHrpioHPv85vjcocxrKA5mj1q0dzL66kiscb+fRbd1s2dnekyhb8jIFvJVpPUh5FHl+7iJZMrZ9hKrtFqNt7CtsTSou+AkrAoXpzyfPoVFFqPmBIWZas7VQTj0IXK/+9zgZ8hEy52HvEfSRTzeN1fGoZF4n5LrrqTrmy32gAng7HIMIpN+UkNfckBDJy3dh7CPWxh4WkQoDCdIt4lTX8X/q0+AIM+YhV0irmY92ZDborvCHCuxGMa1ZAnssxKs2HZn1tCLTnzCSnhRyq6H9MLWQfJeJJ+H+xiHUIzViGL5srOY00fxjBU5MS4b4zgLBzOl5j1BHEuUj+j0b4TwuZvBMSqY8u0bv1FVSlwUzpPpLKu3B+x1B3++EPSUNJ2IdQxZ/OJpeR4QU4RBeNR7T02cXYiz1PhhqJxe1XSK9v8CnQpgSAlOspUq/rugWCb/WZGHjNKXT2RyRj9NBijK3fuGuCIV4wpX5oLxyAJ0/BfypI/LywNjWqNp15jgMUeN3CkNkH8yC7PNXvySqjxnyOg8Y9z3aF4k1DtCFC3DB3SVSQhtxRx0IHRB0RUNr/yB0JNGvca5VhiWHHG0ZzqgkkJz+7cT7Ytfgel4b+5DuLZOqRudhpt06jFFmsPBk5TW79GAPfAcUOAJdQGKYq2NMIQtiN0HBIvknqMp8RzD3W9BpKAAl4BuKbpa8/g91G4QyGscepwW6p9qLk1fTJyydkgpCs/7jfaCn2NvhZ8zZEn+PSDlvjGQIR3HEzToaepduCpfTNpvPNwUVVBIo2zEjB43t4gBjPt4A1Mbf4f3xykNDBuO4F6rgdLsd/VIlaxsJF4a0K+U5GlZVPa7rrCp/vSfUDH9RU6s+LSBKnSBzzHVEQ4NgGzVDlrMT8th6U3dXohvBEqE48zP0SHyPWc3DCuMhKS+omLUqxieRug+R2TLa873JToQeXvLVfkWnyNsM5FL29yWpRIAv7W+UzGWvHWgKN79L1Nmk8waLu1KD6+cXbzoAJjqhe5MBw8SZRDjwGcNCs5I64o7LHwU4YwZUmeAYJKKPmW3WhCzWUg8PJiakN+IaPDIc5hxWNMS02rafbPo1PVAiLCCnPOkuVtdDU8ofhFj2zKIfHvU1aPqzQGhQSSKehSr5HXZGmDBV91VDe60BZ3d/oo5dUw13XgL2LwYmehi/tD5xxMcVocUoM2uX0bs/I8f4qtP+WkKjLDuCdlG0UUT5LPa1oFIIeQhJribq5Wn3ucN70sWK9yjBj+9FGXPVOxDtnp/2Inw9oURusy+3GWy7Q/LpmlsAujZfc5FmM79SkGP/7zJV5u4YqOyZHDSNC4vPoosRi1RdOkUqMp/9yVnOU1X4JCoWRmB137iNHP91v65YGmGlViOoJ4mNnn8JszSBHRXl+C0AOvkyk49T3lSMlohWaGioCQBNudK3g6slhYbiMIBmWA1fFqrrZgTsgh5Uhcqc5VcOT54PlLpMob7Qr36K4woybRDJkVoL4ORSqgSWBRcgj54NubMs1LfV/zTUmn2rc+SyZ7689WK1Oe3pTVKovkSmRjgP/hRERQ+H0dg4v1s0N6TB+ka8q82GcbUDsy5EB5y2RYMetomy9/yIYWpsjgdlQoDrQe8khsbcH2V4sCZnk3Ugg6k5h5FW9vZTUYyROat/f1rgRfNWyL0xUF73BGav08gRdDp/mv9P7Vi+vS4MGmdKmDvmcK4wqlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 5001216, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": 2029745623, "action_noise": null, "start_time": 1665594844.6827207, "learning_rate": 0.0003, "tensorboard_log": "./logs2/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAapzL5VGxs9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00024320000000011, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGNgAAAAAACMAWyUS5uMAXSUR0DErGeuaF23dX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DErH3lZHNHdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErJSaoddWdX2UKGgGR8BkAAAAAAAAaAdLoGgIR0DErKxKJ2t/dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0DErMO6oVEedX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DErNmnbZezdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0DErPUEzO5bdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0DErQzrTpgUdX2UKGgGR8BogAAAAAAAaAdLxGgIR0DErSmCXhOydX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DErUHG2kSFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEriPO2RaHdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErjk2xY7rdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0DErk+2E0zkdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0DErmjVawEAdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErn9/QSi/dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DErpWys0YTdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0DErq2svIwNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DErsuJcgQpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DErujwlSjydX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErv+Fev6kdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DErxY86mwadX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEryu03Ov/dX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEsAxSBK+SdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEsCIVXV9XdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsDd1ZDArdX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEsEz1uivgdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsGO4ZuQ7dX2UKGgGR8BoYAAAAAAAaAdLw2gIR0DEsIBP2wmmdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DEsJaAjIJadX2UKGgGR8BnIAAAAAAAaAdLuWgIR0DEsLFNxlxwdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsMe5DqnndX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsN384xUOdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsPRKWcBmdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsQpD/lySdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEsSeC2+fzdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEsgep4rz5dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEsh1kQPI5dX2UKGgGR8BkQAAAAAAAaAdLomgIR0DEsjVUVBUrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEslJfICEIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEsnCTQmeEdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0DEsoZsGgSOdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEspvhESdwdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0DEsrB3Roh7dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEssYmG/N8dX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEstzdvbXZdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0DEsvQToMa1dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEswkVQAMldX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEsx6c5Ke1dX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DEs/TN+so2dX2UKGgGR8BjAAAAAAAAaAdLmGgIR0DEtAti8WbgdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEtB/apPykdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEtDRbSqlxdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEtEj83uNQdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0DEtGDV2A5JdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEtH5iobXIdX2UKGgGR8BngAAAAAAAaAdLvGgIR0DEtJl/rjYJdX2UKGgGR8BngAAAAAAAaAdLvGgIR0DEtLUi8nNQdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtMpR64UfdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEtN8zqKP5dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0DEtPXDcdo4dX2UKGgGR8BjQAAAAAAAaAdLmmgIR0DEtQwSDh99dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtdXT7VJ+dX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEten+CK77dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtf5AD7qIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEthnJeVs2dX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEti7aIvaldX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEtkSCJ40NdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEtlkfYBeYdX2UKGgGR8BjoAAAAAAAaAdLnWgIR0DEtm/KhcqwdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0DEtobM5fdAdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEtptTHbRGdX2UKGgGR8BioAAAAAAAaAdLlWgIR0DEtrAp6QeWdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEtsQyEcsEdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEttkCtA9ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEt7OUhV2idX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEt8jPD50sdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEt95Rjz7NdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0DEt/bWwu/UdX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuAyXF98adX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuCHvH93sdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEuDdeQdS3dX2UKGgGR8BigAAAAAAAaAdLlGgIR0DEuEz0HyEtdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEuGK4x1xLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEuH4ZydWidX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEuJImzBykdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0DEuKfg75mAdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEuL0aXKKYdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0DEuZFfqoqDdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEuaaIP9UCdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0DEucDEFW4mdX2UKGgGR8BmAAAAAAAAaAdLsGgIR0DEudpcxCY1dX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEufECgbqAdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0DEugZVsDW9dX2UKGgGR8BiYAAAAAAAaAdLk2gIR0DEuhuvllshdX2UKGgGR8Bh4AAAAAAAaAdLj2gIR0DEui+9pRGddX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEukQYUFjedX2UKGgGR8BiwAAAAAAAaAdLlmgIR0DEullv/BFedX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEum+1SflIdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0DEuoRsuWa+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0DEuqFv2oNvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24420, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-50-generic-x86_64-with-glibc2.31 #56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.8.1", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdc20852d0b688446ec5339c67f83f52cfc90ed77807c37e87bad7dd1a003af2
3
+ size 247970
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -151.8, "std_reward": 16.117071694324625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-13T08:42:55.252213"}