File size: 1,579 Bytes
31d96b9 04dc8c8 31d96b9 f2f6dd5 04dc8c8 00731e6 04dc8c8 30eebeb 04dc8c8 3741440 6b1adf1 3741440 04dc8c8 c2cd4fe 04dc8c8 a67e7ca 04dc8c8 a67e7ca 04dc8c8 f2f6dd5 5bf4083 f2f6dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- en
library_name: Pytorch
library_version: 2.0.1+cu118
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- spam detection
- email detection
- text classification
inference: true
model-index:
- name: foduucom/Mail-spam-detection
results:
- task:
type: text-classification
metrics:
- type: precision
value: 0.866
---
# Model Card for Text Classification for email-spam detection
This model is based on Text classification using pytorch library. In this model we propose to used a torchtext library for tokenize & vectorize data.
This model is used in corporate and industrial area for mail detection. It is used three label like job, enquiry and spam.
It achieve the following results on the evalution set:
- accuracy : 0.866
## model architecture for text classification :
<p align="center">
<!-- Smaller size image -->
<img src="https://huggingface.co/foduucom/Mail-spam-detection/resolve/main/text%20classification.jpeg" alt="Image" style="width:600px; height:400px;">
</p>
### Label for text classification:
- Enquiry
- Job
- Spam
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 64
- step_size: 10
- optimizer: Adam
- lr_scheduler_type: StepLR
- lr_scheduler.StepLR:(optimizer,step_size=10,gamma=0.1)
- num_epochs: 10
### Framework versions
- Pytorch 2.0.1+cu118
- torchtext 0.15.2+cpu
```bibtex
@ModelCard{
author = {Nehul Agrawal and
Rahul parihar},
title = {Text classification},
year = {2023}
}
``` |